

Using VisionFive GPIO to Make A Buzzer Beep

with Python Application Note Version: 1.1 Date: 2022/07/29 Doc ID: VisionFive-ANEN-007-1.1

Legal Statements

Important legal notice before reading this documentation.

PROPRIETARY NOTICE

Copyright © Shanghai StarFive Technology Co., Ltd., 2018-2022. All rights reserved.

Information in this document is provided "as is," with all faults. Contents may be periodically updated or revised due to the product development. Shanghai StarFive Technology Co., Ltd. (hereinafter "StarFive") reserves the right to make changes without further notice to any products herein.

StarFive expressly disclaims all warranties, representations, and conditions of any kind, whether express or implied, including, but not limited to, the implied warranties or conditions of merchantability, fitness for a particular purpose and non-infringement.

StarFive does not assume any liability rising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation indirect, incidental, special, exemplary, or consequential damages.

All material appearing in this document is protected by copyright and is the property of StarFive. You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. StarFive authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services.

Contact Us

Address: Room 502, Building 2, No. 61 Shengxia Rd., China (Shanghai) Pilot Free Trade Zone, Shanghai, 201203, China

Website: http://www.starfivetech.com

Email: sales@starfivetech.com(sales) , support@starfivetech.com(support)

Preface

About this guide and technical support information.

About this document

This application note provides steps to use VisionFive's GPIO pins to make a buzzer beep through an example program with Python.

Revision History

Table 0-1 Revision mistory

Version	Released	Revision
V1.1	2022-07-29	Added "cd" in the codeblock
		cd /usr/local/lib64/python3.9/site-packages
		to make it a complete command.

Notes and notices

The following notes and notices might appear in this guide:

• 🥡 Tip:

Suggests how to apply the information in a topic or step.

Note:

Explains a special case or expands on an important point.

Important:

Points out critical information concerning a topic or step.

CAUTION:

Indicates that an action or step can cause loss of data, security problems, or performance issues.

Indicates that an action or step can result in physical harm or cause damage to hardware.

Contents

List of Tables	.5	
List of Figures	6	
Legal Statements	ii	
Preface	iii	
1. Introduction	.7	
1.1. 40-Pin Header Definition	.7	
2. Preparation	.8	
2.1. Preparing Hardware	8	
2.1.1. Hardware Setup	.8	
2.2. Preparing Software	.9	
3. Running Demo Code1	1	
4. Demo Source Code13		

List of Tables

Table 0-1 Revision History	iii
Table 2-1 Hardware Preparation	8
Table 2-2 Connect Buzzer to the 40-Pin Header	9

List of Figures

Figure 1-1 40-Pin Definition	. 7
Figure 2-1 Connect Buzzer to the 40-Pin Header	. 9

1. Introduction

This application note provides steps to use VisionFive's GPIO pins to make a buzzer beep through an example program with Python.

1.1. 40-Pin Header Definition

The following figure shows the location of the 40-pin header. The VisionFive board is taken as an example:

Figure 1-1 40-Pin Definition

2. Preparation

Before executing the demo program, make sure you prepare the following:

2.1. Preparing Hardware

Prepare the following hardware items before running the demo code:

Туре	м/0 [*]	Item	Notes	
General	М	StarFive single board computer	The following boards are applicable:	
			• StarLight	
			• VisionFive	
General	М	• 16 GB (or more) micro-SD card	These items are used for flashing Fe-	
		micro-SD card reader	dora OS into a micro-SD card.	
		 Computer (Windows/MAC/Lin- ux) 		
		 USB to serial converter (3.3 V I/ O) 		
		• Ethernet cable		
		• Power adapter (5 V / 3 A)		
		• USB Type-C Cable		
GPIO Demo (Buzzer)	М	A passive buzzer	-	

Table	2-1	Hardware	Prepara	ition

Note:

*: M: Mandatory, O: Optional

2.1.1. Hardware Setup

The following table and figure describe how to connect LED to the 40-pin header:

Table 2-2 Connect Buzzer to the 40-Pin Header			
Dessitive Durant	40-Pin GPIO Header		
Passive Buzzer	Pin Number	Pin Name	
VCC	1	3.3V Power	
GND	6	GND	
1/0	18	GPIO19	

2.2. Preparing Software

Make sure the following procedures are performed:

- 1. Flash Fedora OS into a Micro-SD card as described in the *Flashing Fedora OS to a Micro-SD Card* section in the *VisionFive Single Board Computer Quick Start Guide*.
- 2. Log into the Fedora and make sure VisionFive is connected to the Internet. For detailed instructions, refer to the Using SSH over Ethernet or Using a USB to Serial Converter section in the VisionFive Single Board Computer Quick Start Guide.
- 3. Execute the pip command on VisionFive Fedora to install the VisionFive.gpio package:

sudo pip install VisionFive.gpio

| 2 - Preparation

Alternatively, you can execute the following command:

```
sudo pip3 install VisionFive.gpio
```

4. (Optional) If you copy the source code to the local directory under VisionFive Fedora, execute the following commands under the source code directory:

The source code can be downloaded by clicking the following link: <u>VisionFive.gpio</u>.

```
sudo yum install python-devel python3-devel
sudo python setup.py install
```

Alternatively, you can execute the following command:

```
sudo python3 setup.py install
```

3. Running Demo Code

To run the demo code, perform the following on VisionFive Fedora:

- 1. Locate to the directory where the test code, buzzer.py, exists:
 - a. Execute the following command to get the directory where VisionFive.gpio exists:

pip show VisionFive.gpio

Example Result:

Location: /usr/local/lib64/python3.9/site-packages

Note:

The actual output depends on how the application is installed.

b. Execute the following to enter the directory, for example, /usr/local/lib64/ python3.9/site-packages as indicated in the previous step output:

cd /usr/local/lib64/python3.9/site-packages

c. Execute the following command to enter the sample-code directory:

cd ./VisionFive/sample-code/

2. Under the sample-code directory, execute the following command:

sudo python buzzer.py

Alternatively, you can execute the following command:

sudo python3 buzzer.py

- 3. Enter the values as prompted to configure the pitch and the lasting time of the beeps as prompted:
 - Enter Pitch (200 to 20000): The frequency (Range: 200 to 20000) of the buzzer. Unit: Hz. For example, 400.

If the value is out of the range (200 to 20000 Hz), a warning message will display, and you need to re-enter the pitch value.

• Enter Cycle (seconds): The time in seconds when the buzzer keeps beeping. For example, 100

| 3 - Running Demo Code

Example:

```
[riscv@fedora-starfive sample-code]$ sudo python3 buzzer.py
Enter Pitch (200 to 20000): 400
Enter Cycle (seconds): 100
```

Result:

The buzzer keeps beeping for 100 seconds at 400 Hz.

4. Demo Source Code

The Python source code of this demo is provided for reference purpose only.

```
buzzer.py:
1.1.1
Please make sure the buzzer is connected to the correct pins.
The following table describes how to connect the buzzer to the 40-pin
 header.
_____
Passive Buzzer___Pin Number____Pin Name
                            3.3V Power
                   1
    VCC
    GND
                  6
                              GND
                              GPI019
   I/O
                  18
1.1.1
import VisionFive.qpio as GPIO
import time
buzz_pin = 19
ErrOutOfRange = 0
def setup():
    #Configure the direction of buzz_pin as out.
    GPIO.setup(buzz_pin, GPIO.OUT)
    #Configure the voltage level of buzz_pin as high.
    GPIO.output(buzz_pin, GPIO.HIGH)
def pitch_in_check():
    val_in = input('Enter Pitch (200 to 20000): ')
    val = float(val_in)
    if 200 <= val <= 20000:</pre>
        return val
    else:
        print('The input data is out of range (200 to 20,000 Hz). Please
 re-enter.')
        return ErrOutOfRange
def loop(pitch, cycle):
    delay = 1.0 / pitch
    cycle = int((cycle * pitch)/2)
    #Buzzer beeps.
    while cycle >= 0:
        GPIO.output(buzz_pin, GPIO.LOW)
```

```
time.sleep(delay)
        GPIO.output(buzz_pin, GPIO.HIGH)
        time.sleep(delay)
        cycle = cycle - 1
def destroy():
    GPIO.output(buzz_pin, GPIO.HIGH)
    GPIO.cleanup()
if __name__ == '__main__':
    setup()
    try:
        #Input value of pitch (200 to 20,000 Hz).
        pitch = pitch_in_check()
        while pitch == 0:
            pitch = pitch_in_check()
        #Input value of cycle time (seconds).
        cycle_in = input("Enter Cycle (seconds): ")
        cycle = int(cycle_in)
        #The buzzer beeps with the specified pitch and cycle.
        loop(pitch, cycle)
    finally:
        destroy()
```