
JH7110 GPU Developing and Porting
Guide
VisionFive 2
Version: 1.1
Date: 2023/5/31
Doc ID: JH7110-DGEN-015

Legal Statements
Important legal notice before reading this documentation.

PROPRIETARY NOTICE

Copyright © Shanghai StarFive Technology Co., Ltd., 2023. All rights reserved.

Information in this document is provided "as is," with all faults. Contents may be periodically updated or revised due to product
development. Shanghai StarFive Technology Co., Ltd. (hereinafter "StarFive") reserves the right to make changes without further
notice to any products herein.

StarFive expressly disclaims all warranties, representations, and conditions of any kind, whether express or implied, including,
but not limited to, the implied warranties or conditions of merchantability, fitness for a particular purpose, and non-
infringement.

StarFive does not assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation indirect, incidental, special, exemplary, or consequential damages.

All material appearing in this document is protected by copyright and is the property of StarFive. You may not reproduce the
information contained herein, in whole or in part, without the written permission of StarFive.

Contact Us

Address: Room 502, Building 2, No. 61 Shengxia Rd., China (Shanghai) Pilot Free Trade Zone, Shanghai, 201203, China

Website: http://www.starfivetech.com

Email:

• Sales: sales@starfivetech.com

• Support: support@starfivetech.com

ii

http://www.starfivetech.com
mailto:sales@starfivetech.com
mailto:support@starfivetech.com

Contents

List of Tables...4

List of Figures... 5

Legal Statements.. ii

Preface... vi

1. Introduction...7

1.1. Overview... 7

1.2. Feature Introduction... 7

2. Software Modules..8

2.1. LIBDRM..8

2.2. X11...8

2.3. Wayland ... 9

2.4. NULLDRMWS...9

3. Display Architecture...10

4. Porting... 11

4.1. Service Architecture..11

4.2. System Abstraction... 12

4.2.1. System Porting Files... 12

4.2.2. System Initialization... 12

4.3. SoC with shared SLC... 16

4.4. GPU Interrupt Service Routines..16

4.5. System DMA..16

5. Display Integration ..18

5.1. Display Class Architecture...18

5.2. Display Context... 19

5.2.1. Display Configuration... 19

5.3. Display and GPU Synchronization...19

5.4. Integrating Display Classes..21

5.4.1. Collecting Porting Requirements... 21

5.4.2. Implementing a Third Party Display Class Component..22

6. Buildroot Weston...23

6.1. Introduction...23

6.2. Configuration...23

6.2.1. Status Bar... 23

6.2.2. Background...24

6.2.3. Idle Time and Lock Screen...24

6.2.4. Color Format.. 25

6.2.5. Display Orientation.. 25

6.2.6. Resolution and Scale..25

6.2.7. Freeze Screen... 26

6.2.8. Screen Status..26

6.2.9. Multiple Screens.. 27

6.2.10. Input Device... 28

6.2.11. Input Device Calibration...28

3 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

Contents

List of Tables

Table 0-1 Revision History...vi

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

4

https://www.starfivetech.com/

Contents

List of Figures

Figure 2-1 DRM Structure..8

Figure 4-1 Service Architecture... 11

Figure 5-1 Display Class Architecture.. 18

Figure 5-2 Configuration Flow... 19

Figure 5-3 Event Flow.. 20

Figure 5-4 Call Graph For Re-Configuration...21

5 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

Preface
About this guide and technical support information.

About this document

This document mainly provides the SDK developers and porting administrators with the programing basics and debugging know-
how for GPU and graphics of the StarFive next generation SoC platform - JH7110.

Audience

This document mainly serves the GPU and graphics relevant driver developers. If you are developing other modules, place a
request to your sales or support consultant for our complete documentation set on JH7110.

Revision History

Table 0-1 Revision History

Version Released Revision

1.1 2023/5/31 Removed the screen parameter adjustment example to avoid
confusion. Hue adjustment is supported yet.

1.0 2022/12/30 First official release.

Notes and notices

The following notes and notices might appear in this guide:

• Tip:
Suggests how to apply the information in a topic or step.

• Note:
Explains a special case or expands on an important point.

• Important:
Points out critical information concerning a topic or step.

• CAUTION:
Indicates that an action or step can cause loss of data, security problems, or performance issues.

• Warning:
Indicates that an action or step can result in physical harm or cause damage to hardware.

vi

1. Introduction

1.1. Overview

The graphics module on the StarFive Linux platform is a RISC-V Linux platform using a GPU module. The advantage is that the
general architecture is easy to customize, and many existing components can be used. The development of many existing basic
open source projects has begun to use StarFive platform as the RISC-V compatible platform. But the disadvantage is that RISC-V
is new and the ecosystem is to be developed. Thus there are not as many practical applications, and a lot of them are still on the
way.

This GPU package contains source code of several graphics’ examples for OpenGL ES 3.2 and OpenGL ES 1.1 x11 API,
Framebuffer, and XWayland graphical back-ends. These applications show that the graphics acceleration is working for different
APIs. The package includes samples, demo code, and documentation for working with the JH7110 family of graphics cores.

1.2. Feature Introduction

The StarFive JH7110 GPU module provides a complete graphics acceleration platform based on open standards, supporting 3D
and GPGPU calculations. The StarFive Linux GPU provides OpenGL ES, EGL, and OpenCL API, but does not support OpenGL. The
supported types are as follows:

• OpenGL ES 3.2

• OpenGL ES 1.1

• Vulkan 1.2

• OpenCL 1.2

7 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

2. Software Modules

For GPU software modules, you mainly have to understand the relationships between LIBDRM, wayland and the x11 compositor
- mesa.

2.1. LIBDRM

LIBDRM is a cross-driver middle-ware that enables user space applications (for example, Mesa and 2D drivers) to communicate
with the kernel through DRI.

The following diagram shows the DRM structure.

Figure 2-1 DRM Structure

LIBDRM is a library under DRM for communication between driver and user layer.

2.2. X11

X11 is an Open Source version of the X Window System that supports many UNIX® and UNIX-like operating systems on a variety
of platforms. X11 is similar to general desktop platforms, with weak GPU performance problems. To run it, simply by typing Xorg.

Xorg is a full featured X server and supports several mechanisms for supplying/obtaining configuration and run-time
parameters: command line options, environment variables, the xorg.conf configuration files, auto-detection, and fallback

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

8

https://www.starfivetech.com/

| 2 - Software Modules
defaults. Typically we uses a configuration file called xorg.conf and configuration files with the suffix .conf in a
directory called xorg.conf.d for its initial setup.

2.3. Wayland

It is recommended to use Yocto Buildroot SDK for Wayland development. Wayland is better than X11 in efficiency, mainly due to
compatibility issues. If you need multiple windows instead of a desktop, you can try Wayland.

Part of the Wayland project is also the Weston reference implementation of a Wayland compositor. Weston can run as an X
client or under Linux KMS and ships with a few demo clients. The Weston compositor is a minimal and fast compositor and is
suitable for many embedded and mobile use cases. Most users can simply run it by typing weston. This will launch Weston inside
whatever environment you launch it from: when launched from a text console, it will take over that console. When launched
from inside an existing Wayland or X11 session, it will start a 'nested' instance of Weston inside a window in that session. Help
is available by running weston --help, or man weston, which will list the available configuration options and display back-ends. It
can also be configured through a file on disk; The configuration file is called weston.ini for its setup.

2.4. NULLDRMWS

9 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

3. Display Architecture

The JH7110 GPU module has the following display architecture options.

• X11

• Wayland

• NULLDRMWS

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

10

https://www.starfivetech.com/

4. Porting

4.1. Service Architecture

The Services software stack is split between ‘client’ services and ‘server’ services.

Services Client should not reside in the privileged Kernel domain, whereas Services Server needs to reside in the privileged
Kernel domain (however that may be achieved in the target OS).

Figure 4-1 Service Architecture

11 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 4 - Porting

4.2. System Abstraction

This section describes all aspects of the System (or SoC) abstraction layer that allows a single common code base to be adapted
to JH7110 containing a StarFive GPU core. The System layer was designed with a goal to minimise the differences between
JH7110 code and the system porting effort. The System layer is a software abstraction layer between the hardware and the rest
of the GPU source code.

4.2.1. System Porting Files

When porting Services to a new SoC the first thing is to create a new system folder.

services/system/<new system name>

Copy files from a reference SoC to this folder, typically:

sysconfig.c

sysconfig.h

sysinfo.h

4.2.1.1. Sysconfig.h

In this header the default GPU clock frequency must be specified (in MHZ), for example, 100 MHz.

The following code block provides an example.

define RGX_NOHW_CORE_CLOCK_SPEED 100000000

4.2.1.2. Sysconfig.c

Generally, sysconfig.c encapsulates all the JH7110 system specific code. The functions in this file are used to define the system
attributes.

4.2.1.3. Sysinfo.h

In this header, the frequency with which the Device Health Check watchdog is called is specified (in ms).

#define DEVICES_WATCHDOG_POWER_ON_SLEEP_TIMEOUT (1500)

Part of the Device Health Check watchdog’s behaviour is to sample the buffer read/write offsets for all active Firmware contexts
to detect if a context has not progressed within the DEVICES_WATCHDOG_POWER_ON_SLEEP_TIMEOUT period (despite the
device being idle). If this is detected then a debug message is written to the kernel log and the driver will attempt to ‘unblock’
the stalled context by force signalling the fence condition which is preventing the context from progressing. This behaviour is
known as Sync Lockup Recovery (SLR).

If the DEVICES_WATCHDOG_POWER_ON_SLEEP_TIMEOUT is too long (For example, more than 5 seconds), a context will have
to be in a stalled state for a longer time before SLR is actioned, reducing the benefit of the SLR feature.

4.2.2. System Initialization

4.2.2.1. SysDevInit

It is necessary to provide an implementation of the following function:

PVRSRV_ERROR SysDevInit(void *pvOSDevice, PVRSRV_DEVICE_CONFIG **ppsDevConfig)

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

12

https://www.starfivetech.com/

| 4 - Porting
The SysDevInit() function is called by the GPU Services Server device create function (PVRSRVDeviceCreate()), via a per-OS call,
for each device found in the system. This function must do any SoC specific device initialisation as well as allocating and setting
up a number of data structures for the given pvOSDevice. These structures are presented in the following sub-sections.

4.2.2.2. PVRSRV_DEVICE_CONFIG

PVRSRV_DEVICE_CONFIG is the primary data structure setup by the SysDevInit() function.

struct _PVRSRV_DEVICE_CONFIG_

{

/*! OS device passed to SysDevInit (linux: 'struct device') */

void *pvOSDevice;

/*!

*! Service representation of pvOSDevice. Should be set to NULL when the

*! config is created in SysDevInit. Set by Services once a device node has

*! been created for this config and unset before SysDevDeInit is called.

*/

struct _PVRSRV_DEVICE_NODE_ *psDevNode;

/*! Name of the device */

IMG_CHAR *pszName; // typically the name of the SoC

/*! Version of the device (optional) */

IMG_CHAR *pszVersion;

/*! Register bank address */

IMG_CPU_PHYADDR sRegsCpuPBase; // physical address of the GPU register bank

/*! Register bank size */

IMG_UINT32 ui32RegsSize; // size in bytes of the GPU register bank

/*! Device interrupt number */

IMG_UINT32 ui32IRQ; // IRQ number for the GPU device

PVRSRV_DEVICE_SNOOP_MODE eCacheSnoopingMode;

/*! Device specific data handle */

IMG_HANDLE hDevData; // handle (actually a pointer) to RGX_DATA

/*! System specific data. This gets passed into system callback func-tions */

IMG_HANDLE hSysData; // handle (actually a pointer) to optional SoC specific device data

IMG_BOOL bHasNonMappableLocalMemory;

/*! Indicates if system supports FBCDC v3.1 */

IMG_BOOL bHasFBCDCVersion31;

/*! Physical Heap definitions for this device.

* eDefaultHeap must be set to GPU_LOCAL or CPU_LOCAL. Specifying any other value

* (e.g. DEFAULT) will lead to an error at device discovery.

* pasPhysHeap array must contain at least one PhysHeap, the declared default heap.

*/

PVRSRV_PHYS_HEAP eDefaultHeap;

PHYS_HEAP_CONFIG *pasPhysHeaps; // pointer to array of physical heap configs

IMG_UINT32 ui32PhysHeapCount; // physical heap count

/*!

*! Callbacks to change system device power state at the beginning and end

*! of a power state change (optional).

*/

PFN_SYS_PRE_POWER pfnPrePowerState; // should perform SoC specific set-up required pre-power

transition for this device

PFN_SYS_POST_POWER pfnPostPowerState; // should perform SoC specific setup that is required

post-power transition for this device

PFN_SYS_GET_POWER pfnGpuDomainPower; // should query the state of the SoC power domain

which supplies the GPU

/*! Callback to obtain the clock frequency from the device (optional) */

PFN_SYS_DEV_CLK_FREQ_GET pfnClockFreqGet; // add this call back the current core clock

frequency (note: DFVS can change clock frequency dynamically

#if defined(SUPPORT_SOC_TIMER)

/*! Callback to read SoC timer register value (mandatory). */

PFN_SYS_DEV_SOC_TIMER_READ pfnSoCTimerRead;

#endif

Confidential Imagination Technologies

PowerVR Graphics GPU Services 11 Revision 1.17.83

/*!

*! Callback to handle memory budgeting. Can be used to reject alloca-tions

*! over a certain size (optional).

*/

PFN_SYS_DEV_CHECK_MEM_ALLOC_SIZE pfnCheckMemAllocSize;

/*!

13 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 4 - Porting
*! Callback to perform host CPU cache maintenance. Might be needed for

*! architectures which allow extensions such as RISC-V (optional).

*/

PFN_SYS_DEV_HOST_CACHE_MAINTENANCE pfnHostCacheMaintenance;

IMG_BOOL bHasPhysicalCacheMaintenance;

#if defined(SUPPORT_TRUSTED_DEVICE)

/*!

*! Callback to send FW image and FW boot time parameters to the trusted

*! device.

*/

PFN_TD_SEND_FW_IMAGE pfnTDSendFWImage;

/*!

*! Callback to send parameters needed in a power transition to the trusted

*! device.

*/

PFN_TD_SET_POWER_PARAMS pfnTDSetPowerParams;

/*! Callbacks to ping the trusted device to securely run RGXStart/Stop() */

PFN_TD_RGXSTART pfnTDRGXStart;

PFN_TD_RGXSTOP pfnTDRGXStop;

#endif /* defined(SUPPORT_TRUSTED_DEVICE) */

/*! Function that does device feature specific system layer initialisa-tion */

PFN_SYS_DEV_FEAT_DEP_INIT pfnSysDevFeatureDepInit;

#if defined(SUPPORT_LINUX_DVFS) || defined(SUPPORT_PDVS)

PVRSRV_DVFS sDVFS; // Used by the IMG DVFS governor

#endif

#if defined(SUPPORT_ALT_REGBASE)

IMG_DEV_PHYADDR sAltRegsGpuPBase;

#endif

/*!

*! Indicates if device physical address 0x0 might be used as GPU memory

*! (e.g. LMA system or UMA system with CPU PA 0x0 reserved by the OS,

*! but CPU PA != device PA and device PA 0x0 available for the GPU)

*/

IMG_BOOL bDevicePA0IsValid;

/*!

*! Callback to notify system layer of device errors.

*! NB. implementers should ensure that the minimal amount of work is

*! done in the callback function, as it will be executed in the main

*! RGX MISR. (e.g. any blocking or lengthy work should be performed by

*! a worker queue/thread instead.)

*/

PFN_SYS_DEV_ERROR_NOTIFY pfnSysDevErrorNotify;

Confidential Imagination Technologies

PowerVR Graphics GPU Services 12 Revision 1.17.83

/*!

*! Slave DMA channel request callbacks

*/

PFN_SLAVE_DMA_CHAN pfnSlaveDMAGetChan;

PFN_SLAVE_DMA_FREE pfnSlaveDMAFreeChan;

/*!

*! Conversion of device memory to DMA addresses

*/

PFN_DEV_PHY_ADDR_2_DMA_ADDR pfnDevPhysAddr2DmaAddr;

/*!

*! DMA channel names

*/

IMG_CHAR *pszDmaTxChanName;

IMG_CHAR *pszDmaRxChanName;

/*!

*! DMA device transfer restrictions

*/

IMG_UINT32 ui32DmaAlignment;

IMG_UINT32 ui32DmaTransferUnit;

/*!

*! System-wide presence of DMA capabilities

*/

IMG_BOOL bHasDma;

};

In the above code block:

eCacheSnoopingMode should be specified as follows:

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

14

https://www.starfivetech.com/

| 4 - Porting
• PVRSRV_DEVICE_SNOOP_NONE - This means that neither the CPU nor GPU supports having their caches snooped.

• PVRSRV_DEVICE_SNOOP_CPU_ONLY - This means that the CPU will allow the GPU to inspect the CPU cache. The GPU
cache is not visible to the CPU.

• PVRSRV_DEVICE_SNOOP_DEVICE_ONLY - This means that the GPU will allow the CPU to inspect the GPU cache. The
CPU cache is not visible to the GPU.

• PVRSRV_DEVICE_SNOOP_CROSS - This means that both CPU and GPU support cache snooping. They can each inspect
the others caches.

• PVRSRV_DEVICE_SNOOP_EMULATED - This means that neither the CPU nor GPU supports having their caches snooped
but the GPU software/firmware should emulate snooping by maintaining the CPU and GPU data caches appropriately.

eDefaultHeap determines which heap to use for the majority of device memory allocations. The server will allocate from the
default heap unless a physical heap is specified in the allocation.

eDefaultHeap should be specified as follows:

• PVRSRV_PHYS_HEAP_GPU_LOCAL - This means that the device allocations will be fulfilled with memory that is
physically (in terms of access time and throughput) closest to the GPU.

• PVRSRV_PHYS_HEAP_CPU_LOCAL - This means that the device allocations will be fulfilled with memory that is
physically (in terms of access time and throughput) closest to the CPU. eDefaultHeap must be set to a physical heap
provided in the pasPhysHeaps array member. bDevicePA0IsValid should be set to IMG_TRUE if device physical address
0x0 is available and can be accessed by the GPU, IMG_FALSE otherwise.

Examples of systems where device physical address 0x0 is valid:

• LMA with local memory mapped in the GPU from physical address 0x0.

• UMA with CPU physical address != device physical address and 0x0 is a valid device address.

Examples of systems where device physical address 0x0 is not valid:

• Regular UMA with device and CPU physical address 0x0 reserved by the OS.

• UMA with a memory protection unit forbidding GPU accesses outside of specific ranges.

When System DMA is available, the following fields should be specified:

• pfnSlaveDMAGetChan and pfnSlaveDMAFreeChan: Should return and free DMA Engine Channels by their DMA driver-
relative names. Upper GPU Service layers will also make use of the fields right below when calling these two functions.

• pszDmaTxChanName and pszDmaRxChanName: System DMA Engine driver names for send and receive channels. The
above assignments will depend on these two, and should be set to whatever channel names for the DMA Engine driver
the customer wants to connect with the Services DMA API.

• pfnDevPhysAddr2DmaAddr: Should perform the translation between RGX device physical addresses and DMA
addresses that the underlying DMA device understands. Necessary for mapping DMA buffers before a SG transfer and
programming the DMA hardware.

• ui32DmaAlignment and ui32DmaTransferUnit are used if the hardware has alignment and transfer size restrictions.
ui32DmaAlignment is in bytes and refers to the byte alignment required at the start of a transfer buffer.
ui32DmaTransferUnit is in bytes and refers to the minimum size of transfer supported by the hardware.

• bHasDma: Informs the upper layers of the Services kernel driver that all of the above DMA functionality is actually
present in the system.

pasPhysHeaps (PHYS_HEAP_CONFIG)

Structure used to describe a physical Heap supported by a system. A system layer module can declare multiple physical heaps
for different purposes. At a minimum a system must provide one physical heap tagged for PHYS_HEAP_USAGE_GPU_LOCAL.

A heap represents a discrete pool of physical memory and how it is managed, as well as other associating properties and
address translation logic.

15 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 4 - Porting

4.2.2.3. SysDebugInfo

It is necessary to provide an implementation of the following function:

PVRSRV_ERROR SysDebugInfo(PVRSRV_DEVICE_CONFIG *psDevConfig,

DUMPDEBUG_PRINTF_FUNC *pfnDumpDebugPrintf,

void *pvDumpDebugFile)

The SysDebugInfo() function is called via the PVRSRVDebugRequest() function and is required to dump JH7110 specific
information, using the provided print function, typically at the point of a failure. Examples include the JH7110 temperature
printed out in the log:

PVR_LOG(("Chip temperature: %d degrees C", uiTemperature))

4.2.2.4. SysInstallDeviceLISR Function

It is necessary to provide an implementation of the following function:

PVRSRV_ERROR SysInstallDeviceLISR(IMG_HANDLE hSysData,

IMG_UINT32 ui32IRQ,

const IMG_CHAR *pszName,

PFN_LISR pfnLISR,

void *pvData,

IMG_HANDLE *phLISRData)

SysInstallDeviceLISR() is called by the GPU Services server device initialisation code in order to install a device interrupt handling
function. Typically, it is sufficient to call the OSInstallSystemLISR() helper function.

4.2.2.5. SysUninstallDeviceLISR

It’s necessary to provide an implementation of the following function:

PVRSRV_ERROR SysUninstallDeviceLISR(IMG_HANDLE hLISRData)

SysUninstallDeviceLISR() is called by the GPU Services server device de-initialisation code in order to uninstall the device
interrupt handling function, which was installed by SysInstallDeviceLISR(). If the OSInstallSystemLISR() function was used
previously then this should be done by calling the OSUninstallSystemLISR() helper function.

4.3. SoC with shared SLC

If the System Level Cache (SLC) in the SoC is shared between the GPU and other devices (e.g. video cores), it is necessary to build
the GPU with the SUPPORT_SHARED_SLC build option. When this build option is used, the driver does not attempt to reset or
initialize the SLC as part of the GPU initialization. Instead, the system layer must call the function RGXInitSLC() after the SLC has
powered up and before any device attempts to use it.

4.4. GPU Interrupt Service Routines

Typically there is an interrupt service routine (ISR) for the GPU and another for the display hardware’s VSync event. On
completion of the port it is necessary to check that the ISR for the GPU is scheduled on completion of every GPU operation
scheduled by the firmware. It is also necessary to check the VSync event on the display hardware additionally schedules an
independent Vsync specific ISR for every VSync event.

These checks are very important since the platform can seem functional without one or both of these ISRs functioning correctly.
This can result in a lengthy debug investigation weeks or months later and cause seemingly unrelated issues.

4.5. System DMA

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

16

https://www.starfivetech.com/

| 4 - Porting
The GPU can be built with support for DMA transfers between host and device memory. If the system integrator has provided a
hardware DMA Engine driver to allow data transfers between system memory and device memory, then the GPU can be built to
provide APIs to integrate with this. It is expected that the vendor will provide a DMA engine that conforms to the Linux Kernel
DMA Engine API interface.

17 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

5. Display Integration

5.1. Display Class Architecture

Design considerations:

• Important for independent display hardware to be 'coordinated' with Services PowerVR Rogue class GPUs

• Third party Display Class API provides a consistent interface between Services and third-party display device drivers

• Abstracts control of display hardware via the Display Class API

• Provides maximum performance while maintaining the order of operations on shared resources.

Figure 5-1 Display Class Architecture

1. Client Application: It has a Services Client component built into it which provides the Services API and the Display Class
client API. This is often a window manager that directly or indirectly interfaces to other rendering applications.

2. Services Server: The ‘kernel mode’ Services component implementing the Display Class logic and initiates calls into the
third-party Display Class Component.

3. Third Party Display Device Driver: This is a device driver for controlling the display hardware.

‘Interfacing code’ is added to the driver allowing the display device driver to be integrated with Services. There are two sub-
components:

• Display Driver (light green): This contains device specific code necessary to drive the display. This source code is outside
of the GPU.

• Display Class Component (dark green): This contains display device specific code to implement the Display Class
callback functions invoked by the Services Server and the code calling exported functions from the Services Server.

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

18

https://www.starfivetech.com/

| 5 - Display Integration

5.2. Display Context

A display context is a container in which buffers are allocated or imported and operations such as reconfigurations are made. It’s
purely a SW concept and is there to ensure that operations issued on the same display context are issued in order.

5.2.1. Display Configuration

Clients can configure the display to present one or more buffers with a certain configuration for each buffer. Due to the
pipelined nature of the driver these operations will normally be linked to synchronization fences that allow the configuration
request to be queued but not enacted until required (e.g. when the GPU has finished a render). The Services server handles
all knowledge of synchronization and will only issue the configuration request when the operation is allowed to run, i.e. the
synchronisation fence is met and the display is able to process a new command.

The third-party display driver must support multiple commands in flight; that is, configuration requests that have been sent to
it but have not yet been retired. This is due to the fact that the display driver is not allowed to retire the active configuration
until a new request has been issued and is on the display. When a configuration has been finished, it has been displayed for the
specified period and is no longer being used by the display, it is retired. This is notified to Services server from the display driver
to ensure that any required synchronisation signalling is done.

A number of these configuration requests can be issued by the client without having to wait until they have been retired
ensuring that Services can keep all hardware devices running by having operations queued, minimizing the system idle time.

Figure 5-2 Configuration Flow

5.3. Display and GPU Synchronization

The client application is expected to manage the synchronization of the GPU and the display controller and must specify the
correct synchronisation fence in the configure request. Usually a synchronization update fence from the last submission of
rendering GPU work to the display buffer is supplied, merged in with any other dependencies. When this fence is met, the
display buffer is ready to be shown.

19 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 5 - Display Integration
Figure 5-3 Event Flow

The above diagram shows how synchronisation is embedded in the configuration flow. The blue Sync comments above show
when fences may be given, checked or signalled. The general flow has three major stages:

1. When the client application is requesting a configuration change to display a buffer, it usually specifies an acquire fence
that will be signalled as soon as the buffer is ready to be displayed. That means usually the client application or the GPU
has finished writing to it.

2. There are three events which trigger a check of the synchronization fence of the next command in the configuration
queue. These events could possibly have unblocked the next configuration command:

a. A GPU task has finished and signalled a update fence.

b. Insertion of a new command in the configure queue.

c. A configuration has been retired, i.e. a buffer is again ready to be used.

3. If the synchronization fence with the next command in the queue is signalled and the command is ready to be
submitted Services will call into the display driver via a registered configuration callback to display the buffer. As soon
as the buffer is not on display anymore the display driver must retire the configuration with a call into services. Services
then will signal the synchronisation release fence associated with that configuration, and this may unblock another item
in the configuration queue or a GPU task.

4. The drawn VSync event is special in that it will not change any synchronisation fences but will signal a waiting client
application to wake up. The client application itself can choose if it wants to be notified on a VSync event by calling
PVRSRVDCSetVSyncReporting from the Services client library. This will ask the display driver to call the exported server
function PVRSRVCheckStatus every time a VSync event occurred. PVRSRVCheckStatus again will signal a Services server
event object that the client application can wait for by calling PVRSRVEventObjectWait.

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

20

https://www.starfivetech.com/

| 5 - Display Integration

5.4. Integrating Display Classes

This section discusses which steps it takes to port the Display Class to a new system. It will refer to the Display Class example
implementation and the Services unit test rgx_blit_test found under:

GPU_PATH/services/display/dc_example/...

GPU _PATH/unittests/services/rogue/external/rgx_blit_test/...

The dc_example implementation shows how a Display Class component implementation could look like and the test is
exemplifying how to integrate the Services Display Class client function calls in the rendering workflow of a client application.
Usually this client application is a window manager but, in this example, (rgx_blit_test) the rendering application directly makes
calls to the Display Class client API.

The dc_example module was designed to work without actual display hardware and just implements the basics to make it work
with the Display Class workflow.

Figure 5-4 Call Graph For Re-Configuration

The above diagram shows a typical function call stack for a reconfiguration call that originates from the window manager; in this
case a Services WSEGL implementation. It is based on the diagram in Service Architecture (on page 11) and is the path most calls
from the window manager (client application) to the Display Class client interface take.

5.4.1. Collecting Porting Requirements

This section provides some suggestions on how to best start the porting.

It makes sense to first implement the callbacks for the Third-party Display Class Component and then integrating the Services
client-side functionality with the window manager.

First, one should assemble features and restrictions of the display controller hardware and the display driver. Answering the
following questions is usually a good start:

• Does the controller have an MMU or can it only access physically contiguous memory?

• Are you able to map/unmap buffers at any time? Do you want to keep them mapped?

• Can the controller access only memory from a special region?

• Do you support multiple buffers and therefore allow display flips?

21 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 5 - Display Integration
• Does the driver have its own mechanism to allocate memory?

• Can the display configuration change and does Services need to know about it?

• Does the controller emit VSync-events?

• Should the window manager be able to turn off the screen?

5.4.2. Implementing a Third Party Display Class Component

The answers to the questions in the previous section should give the implementer a good overview of the requirements and will
help to choose which parts of the function table to implement. The used parameter structures can be looked up either in the
integration reference or directly in the headers.

GPU_PATH/include/dc_external.h

GPU_PATH/include/rogue/pvrsrv_surface.h

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

22

https://www.starfivetech.com/

6. Buildroot Weston

6.1. Introduction

Weston is the official implementation reference of Wayland open source display protocol, and Weston 9.0(or 8.0).

There are multiple ways to configure StarFive Buildroot SDK Weston:

• Command line options: That is, the options of the command when starting Weston.

The following code block provides an example.

weston --tty=2

• Configuration file: The weston.ini configuration file.

The configuration is located in /etc/xdg/weston/weston.ini, corresponding to the location of SDK code:
buildroot/package/weston/weston.ini.

Please refer to: https://fossies.org/linux/weston/man/weston.ini.man.

• Special environment variables

Generally, these environment variables are set in these places:

◦ The start-up script of Weston, in /etc/init.d/rc.pvr of the SDK firmware.

The following code block provides an example.

/etc/init.d/rc.pvr start

...

export WESTON_DRM_MIRROR=1 # should be set before starting

Weston

...

weston&

◦ The environment script of Weston, in /root/run_weston.sh of the SDK firmware, corresponding to the
location of SDK code: buildroot/package/weston/run_weston.sh.

• Dynamic configuration file:

For DRM back-end, Buildroot SDK Weston provides some dynamic configuration support, such as dynamic display
configuration files, the default path is /tmp/.weston_drm.conf. The dynamic configuration can be specified by
the environment variable WESTON_DRM_CONFIG.

• udev rules: Some configuration of input devices in Weston should be set by udev rules.

6.2. Configuration

6.2.1. Status Bar

Weston supports setting the background color and position of status bar in the shell section of weston.ini configuration file,
and setting the quick start program in the launcher section, for example:

/etc/xdg/weston/weston.ini

[shell]

panel-color=0x90ff0000

the color format is ARGB8888

panel-position=bottom

top|bottom|left|right|none,none is disable

23 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://fossies.org/linux/weston/man/weston.ini.man
https://www.starfivetech.com/

| 6 - Buildroot Weston

[launcher]

icon=/usr/share/icons/gnome/24x24/apps/utilities-terminal.png

icon path

path=/usr/bin/gnome-terminal

quick start command

Currently, Weston does not support setting the size of status bar. You have to modify in the code level when need some
adjustments:

// weston/clients/desktop-shell.c

static void panel_configure(void *data,

struct weston_desktop_shell *desktop_shell, uint32_t edges, struct window *window, int32_t width, int32_t

 height)

{

...

switch (desktop->panel_position) {

case WESTON_DESKTOP_SHELL_PANEL_POSITION_TOP: case WESTON_DESKTOP_SHELL_PANEL_POSITION_BOTTOM:

height = 32; # height break;

case WESTON_DESKTOP_SHELL_PANEL_POSITION_LEFT: case WESTON_DESKTOP_SHELL_PANEL_POSITION_RIGHT:

switch (desktop->clock_format) { case CLOCK_FORMAT_NONE:

width = 32; break;

case CLOCK_FORMAT_MINUTES:

width = 150; break;

case CLOCK_FORMAT_SECONDS:

width = 170; break;

}

break;

}

6.2.2. Background

Weston supports setting the background pattern and color in the shell section of the weston.ini configuration file.

The following code block provides an example.

/etc/xdg/weston/weston.ini

[shell]

background-image=/usr/share/backgrounds/gnome/Aqua.jpg

Background pattern (wallpaper) absolute path

background-type=tile

scale|scale-crop|tile

background-color=0xff002244

The color format is ARGB8888, effective when no background pattern is set

6.2.3. Idle Time and Lock Screen

Idle Time

The idle timeout of Weston can be configured in the command options or in the core section of weston.ini.

The following code blocks provide 2 examples.

• # /root/run_weston.sh

...

weston --idle-time=0& # 0 means idle mode is disabled, in

seconds

• # /etc/xdg/weston/weston.ini

[core]

idle-time=10

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

24

https://www.starfivetech.com/

| 6 - Buildroot Weston

Lock Screen

Lock screen of Weston can be configured in the shell section of weston.ini.

The following code block provides an example.

/etc/xdg/weston/weston.ini

[shell]

locking=false

lock screen is disabled

lockscreen-icon=/usr/share/icons/gnome/256x256/actions/lock.png

unlock button icon

lockscreen=/usr/share/backgrounds/gnome/Garden.jpg

background of lock screen

6.2.4. Color Format

The default display format of Weston in the Buildroot SDK is ARGB8888. For some low-performance platforms, you can
configure RGB565 in the core section in the weston.ini.

The following code block provides an example.

/etc/xdg/weston/weston.ini

[core]

gbm-format=rgb565

xrgb8888|rgb565|xrgb2101010

You can also configure the display format of each screen individually in the output section of weston.ini.

The following code block provides an example.

/etc/xdg/weston/weston.ini

[output]

name=LVDS-1

output name can be seen in the Weston startup log, such as: Output LVDS-1,

(connector 71, crtc 60)

gbm-format=rgb565

xrgb8888|rgb565|xrgb2101010

6.2.5. Display Orientation

You can configure the display orientation of screens in the output section of weston.ini.

The following code block provides an example.

/etc/xdg/weston/weston.ini

[output]

name=LVDS-1

transform=90

normal|90|180|270|flipped|flipped-90|flipped-180|flipped-270

If you want to configure the orientation dynamically, you can use the dynamic configuration file.

The following code block provides an example of setting the rotation of 90 degrees on all screens.

echo "output:all:rotate90" > /tmp/.weston_drm.conf

The following code block provides an example of setting the rotation of 180 degrees on the eDP screen 1.

echo "output:eDP-1::rotate180" > /tmp/.weston_drm.conf #

6.2.6. Resolution and Scale

You can configure the screen resolution and scale of Weston in the output section of weston.ini.

The following code block provides an example.

25 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 6 - Buildroot Weston
/etc/xdg/weston/weston.ini

[output]

name=LVDS-1

mode=1280x800

should be an effective resolution supported by the screen

scale=2

value must be an integer, support application-level scaling

If you want to scale to a specific resolution (without changing the physical resolution), you can configure through
WESTON_DRM_VIRTUAL_SIZE environment variable.

The following code block provides an example.

/root/run_weston.sh

export WESTON_DRM_VIRTUAL_SIZE=1024x768

If you want to configure the resolution and scaling dynamically, you can use the dynamic configuration file.

The following code block provides an example of changing the resolution of HDMI-A-1 to 800 × 600.

echo "output:HDMI-A-1:mode=800x600" > /tmp/.weston_drm.conf

The following code block provides an example of setting eDP-1 display to the position of (10, 20), and scaling the display to 400 ×
600.

echo "output:eDP-1:rect=<10,20,410,620>" > /tmp/.weston_drm.conf

When the VOP hardware doesn't support scaling, these kinds of scale requires RGA 2D acceleration from StarFive.

6.2.7. Freeze Screen

When Weston is started, there will be a black screen that switches between boot logo and UI display temporarily.

If you want to prevent this black screen, you can freeze the Weston screen content temporarily.

The following code block provides an example of adding warm-up to Weston's command options.

/root/run_weston.sh

start)

...

weston --warm-up&

The following code block provides an example of freezing 1 specific display and unfreezing after 1 second.

/root/run_weston.sh

start)

...

export WESTON_FREEZE_DISPLAY=/tmp/.weston_freeze

touch /tmp/.weston_freeze

weston&

...

sleep 1 && rm /tmp/.weston_freeze& # unfreeze after 1 second

The following code block provides an example of freezing all the displays and unfreezing after 1 second:

/root/run_weston.sh

start)

...

echo "output:all:freeze" > /tmp/.weston_drm.conf # Freeze the display

weston&

...

sleep 1 && \

echo "output:all:unfreeze" > /tmp/.weston_drm.conf& # unfreeze after 1 second

6.2.8. Screen Status

The DRM framework supports setting force status for screens.

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

26

https://www.starfivetech.com/

| 6 - Buildroot Weston
The following code block provides an example.

echo on > /sys/class/drm/card0-HDMI-A-1/status # Force HDMI-A-1 connected

#on|off|detect, detect means hot-plug

For more specific screen status configuration, You can configure settings in the dynamic configuration file.

The following list provides some examples for different scenarios.

• Turn off the DSI display.

echo "output:DSI-1:off" >> /tmp/.weston_drm.conf

• Turn on the eDP display.

echo "output:eDP-1:on" >> /tmp/.weston_drm.conf

• Turn off the display.

echo "compositor:state:off" >> /tmp/.weston_drm.conf

• Turn off display and enable touch-and-wakeup.

echo "compositor:state:sleep" >> /tmp/.weston_drm.conf

• Turn on the display.

echo "compositor:state:on" >> /tmp/.weston_drm.conf

6.2.9. Multiple Screens

The Buildroot SDK Weston supports multi-screen with the same or different display and hot-plug functions.

You can differentiate screens based on the name of DRM (obtained through Weston start-up log or /sys/class/drm/
card0-<name>).

You can configure the settings in environment variables.

The following list provides examples for different scenarios.

• Specify HDMI-A-1 as the main display:

export WESTON_DRM_PRIMARY=HDMI-A-1

• In mirror mode (multi-screen with the same display), if you skip this environment variable, the system will show
different displays:

export WESTON_DRM_MIRROR=1

• In mirror mode, scaling maintains the aspect ratio. If you skip this environment variable, the system will show forced
full-screen:

export WESTON_DRM_KEEP_RATIO=1

• Turn off the built-in monitor automatically when an external monitor is connected:

export WESTON_DRM_PREFER_EXTERNAL=1

• When an external monitor is connected, keep the first external monitor as the main display by default:

export WESTON_DRM_PREFER_EXTERNAL_DUAL=1

When the VOP hardware doesn't support scaling, it would try to use StarFive RGA 2D acceleration.

It also supports disabling the specified screen individually in the output section of weston.ini.

The following code block provides an example.

/etc/xdg/weston/weston.ini

[output]

27 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 6 - Buildroot Weston
name=LVDS-1

mode=off

off|current|preferred|<WIDTHxHEIGHT@RATE>

6.2.10. Input Device

No Screen

The Weston service requires at least one input device by default. If there is no input device, you need to configure the special
settings in the core section of weston.ini.

The following code block provides an example.

/etc/xdg/weston/weston.ini

[core]

require-input=false

Multiple Screens

If there are multiple screens in Weston, you should bound the input devices to screens.

• You can configure it in the udev rules in the WL_OUTPUT environment of the input device.

The following code block provides an example.

/lib/udev/rules.d/99-goodix-ts.rules

ATTRS{idVendor}=="dead", ATTRS{idProduct}=="beef", ENV{WL_OUTPUT}="HDMI-A-1"

• Or you can configure it in the udev rules in WL_SEAT environment in udev rules.

The following code blocks provide an example.

/lib/udev/rules.d/99-goodix-ts.rules

ATTRS{idVendor}=="dead", ATTRS{idProduct}=="beef", ENV{WL_SEAT}="seat1"

/etc/xdg/weston/weston.ini

[output]

name=LVDS-1

seat=seat1

6.2.11. Input Device Calibration

Touch Screen

If you need to calibrate the touch screen, you can use the WESTON_TOUCH_CALIBRATION environment variable.

The following code block provides an example.

/root/run_weston.sh

export WESTON_TOUCH_CALIBRATION="1.013788 0.0 -0.061495 0.0 1.332709 -0.276154"

Calibration Tool

You can also use the Weston calibration tool weston-calibrator to obtain the calibration parameters. After running this tool, a
number of random points will be generated, and then click them in sequence to output the calibration parameters.

The following code block provides an example.

Final calibration values: 1.013788 0.0 -0.061495 0.0 1.332709 -0.276154

Or you can use the new Weston touch calibrator: weston-touch-calibrator.

The following code block provides an example.

www.starfivetech.com © 2018-2023 StarFive Technology
All rights reserved

28

https://www.starfivetech.com/

| 6 - Buildroot Weston
/etc/xdg/weston/weston.ini

[libinput]

touchscreen_calibrator=true

calibration_helper=/bin/weston-calibration-helper.sh

29 © 2018-2023 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

	JH7110 GPU Developing and Porting Guide
	Legal Statements
	PROPRIETARY NOTICE
	Contact Us

	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Audience
	Revision History
	Notes and notices

	1. Introduction
	1.1. Overview
	1.2. Feature Introduction

	2. Software Modules
	2.1. LIBDRM
	2.2. X11
	2.3. Wayland
	2.4. NULLDRMWS

	3. Display Architecture
	4. Porting
	4.1. Service Architecture
	4.2. System Abstraction
	4.2.1. System Porting Files
	4.2.1.1. Sysconfig.h
	4.2.1.2. Sysconfig.c
	4.2.1.3. Sysinfo.h

	4.2.2. System Initialization
	4.2.2.1. SysDevInit
	4.2.2.2. PVRSRV_DEVICE_CONFIG
	4.2.2.3. SysDebugInfo
	4.2.2.4. SysInstallDeviceLISR Function
	4.2.2.5. SysUninstallDeviceLISR

	4.3. SoC with shared SLC
	4.4. GPU Interrupt Service Routines
	4.5. System DMA

	5. Display Integration
	5.1. Display Class Architecture
	5.2. Display Context
	5.2.1. Display Configuration

	5.3. Display and GPU Synchronization
	5.4. Integrating Display Classes
	5.4.1. Collecting Porting Requirements
	5.4.2. Implementing a Third Party Display Class Component

	6. Buildroot Weston
	6.1. Introduction
	6.2. Configuration
	6.2.1. Status Bar
	6.2.2. Background
	6.2.3. Idle Time and Lock Screen
	Idle Time
	Lock Screen

	6.2.4. Color Format
	6.2.5. Display Orientation
	6.2.6. Resolution and Scale
	6.2.7. Freeze Screen
	6.2.8. Screen Status
	6.2.9. Multiple Screens
	6.2.10. Input Device
	No Screen
	Multiple Screens

	6.2.11. Input Device Calibration
	Touch Screen
	Calibration Tool

