

VisionFive 2 40-Pin GPIO Header User Guide

Version: 1.3 Date: 2023/03/31 Doc ID: VisionFive2-UGEN-001

Legal Statements

Important legal notice before reading our documentation.

PROPRIETARY NOTICE

Copyright © Shanghai StarFive Technology Co., Ltd., 2023. All rights reserved.

Information in this document is provided "as is," with all faults. Contents may be periodically updated or revised due to the product development. Shanghai StarFive Technology Co., Ltd. (hereinafter "StarFive") reserves the right to make changes without further notice to any products herein.

StarFive expressly disclaims all warranties, representations, and conditions of any kind, whether express or implied, including, but not limited to, the implied warranties or conditions of merchantability, fitness for a particular purpose and non-infringement.

StarFive does not assume any liability rising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation indirect, incidental, special, exemplary, or consequential damages.

All material appearing in this document is protected by copyright and is the property of StarFive. You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. StarFive authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services.

Contact Us

Address: Room 502, Building 2, No. 61 Shengxia Rd., China (Shanghai) Pilot Free Trade Zone, Shanghai, 201203, China

Website: http://www.starfivetech.com

Email: sales@starfivetech.com(sales">sales@starfivetech.com(support@starfivetech.com(support) , support@starfivetech.com(sales) , support@starfivetech.com(sales))

Preface

About this guide and technical support information.

About this document

This document is intended to:

- introduce the 40-pin header.
- provide instructions to configure and debug GPIO, I2C, SPI, PWM, and UART.
- provide peripheral examples to use the 40-pin GPIO header.

Revision History

Table 0-1 Revision History

Revision History Table 0-1 Revision History		
Version	Released	Revision
1.0	2022/12/21	The first official release.
1.1	2022/12/27	Updated GitHub Repository (on page 11).
1.2	2023/03/15	Updated steps in:
	C	 <u>Method 1: Directly Replacing DTB File (on page 12)</u> <u>Method 2: Adding Startup Item (on page 13)</u>
1.3	2023/03/31	Updated figure in <u>Hardware Setup (on page 28)</u> .

Notes and notices

The following notes and notices might appear in this guide:

- Tip: i Suggests how to apply the information in a topic or step.
- Note:

Explains a special case or expands on an important point.

Important:

Points out critical information concerning a topic or step.

CAUTION:

Indicates that an action or step can cause loss of data, security problems, or performance issues.

Warning:

Indicates that an action or step can result in physical harm or cause damage to hardware.

Contents

List of Tables	6
List of Figures	7
Legal Statements	ii
Preface	iii
1. Overview	
1.1. 40-Pin Header Definition	8
2. GPIO Pinout	9
3. Preparation	
3.1. Preparing Hardware	
3.2. Preparing Software	
3.2.1. GitHub Repository	
3.2.2. Flashing Debian OS to a Micro-SD Card	
3.2.3. Generating DTB	
3.2.4. Replacing DTB	
4. GPIO Operations	
4.1. Configuring GPIO	
5. I2C Operations	
5.1. Configuring I2C GPIO	
5.1.1. Hardware Setup	
5.1.2. Configuring dts File	
5.2. Debugging I2C GPIO	17
6. SPI Operations	
6.1. Configuring SPI GPIO	20
6.1.1. Modify Pins	
6.2. Debugging SPI GPIO	20
6.2.1. Loopback Test	21
6.2.2. Testing SPI with ADXL345 Module	22
7. PWM Operations	
7.1. Configuring PWM GPIO	
7.1.1. Modify Pin	25
7.1.2. PWM and Pin Name Mapping	25
7.2. Debugging PWM GPIO	25
8. UART Operations	
8.1. Configuring UART GPIO	27
8.1.1. Modifying dts	
8.2. Debugging UART GPIO	
8.2.1. Hardware Setup	
8.2.2. Debugging UART Send and Receive Functions	
9. Peripheral Examples	33
9.1. Sense Hat (B) Example	33
9.1.1. Hardware Setup	
9.1.2. Running Example with Sense Hat (B)	
9.2. 2.4inch LCD Module Example	35

9.2.1. Hardware Setup	35
9.2.2. Executing Example	37

List of Tables

Table 0-1 Revision History	iii
Table 2-1 GPIO Assignments	9
Table 3-1 Hardware Preparation	10
Table 3-2 GitHub Repository Addresses	11
Table 5-1 Connect Sense Hat (B) to the 40-Pin Header	16
Table 7-1 PWM and Pin Name Mapping	25
Table 8-1 UART and DEV Mapping	28
Table 9-1 Connect Sense Hat (B) to the 40-Pin Header	33
Table 9-2 Connect 2.4inch LCD with 40-pin Header	35

List of Figures

Figure 1-1 40-Pin Definition	8
Figure 3-1 Example	13
Figure 5-1 Connect Sense Hat (B) to the 40-Pin GPIO Header	16
Figure 5-2 Example File Content	17
Figure 5-3 Example Output	17
Figure 5-4 Example Output	18
Figure 5-5 Example Output	18
Figure 5-6 Example Output	19
Figure 6-1 Modify Pins	20
Figure 6-2 Connect Pin 19 with 21	21
Figure 6-3 Example Output	21
Figure 6-4 Example Output	22
Figure 6-5 Connect ADXL345 Module to the Header	23
Figure 6-6 Example Output	24
Figure 7-1 Example File Content	25
Figure 8-1 Example Configuration	27
Figure 8-2 Example Configuration	27
Figure 8-3 Example Configuration	28
Figure 8-4 Connect the Converter to the Header	29
Figure 8-5 Example Configuration	29
Figure 8-7 Example Output	30
Figure 8-8 Example Configuration	30
Figure 8-10 Example Command and Output	31
Figure 8-11 Example Output	31
Figure 8-12 Test UART Send	32
Figure 8-13 Test UART Receive	32
Figure 9-1 Connect Sense Hat (B) to the 40-Pin Header	33
Figure 9-2 Connect Sense Hat (B) to the 40-Pin Header	34
Figure 9-3 Connect 2.4inch LCD with 40-Pin Header	36
Figure 9-5 Example Output	37

1. Overview

The 40-pin header allows VisionFive 2 single board computers to interface with a variety of external components, which enables developers to create their projects. This document is intended to:

- introduce the 40-pin header as described in this chapter.
- provide instructions to configure and debug GPIO, I2C, SPI, PWM, and UART, as described in <u>GPIO Operations (on page 15)</u>, I2C Operations (on page 16), SPI Operations (on page 20), PWM Operations (on page 25), and <u>UART</u>
 <u>Operations (on page 27)</u> chapters.
- provide peripheral examples to use the 40-pin header, as described in the <u>Peripheral Examples (on page 33)</u> chapter.

1.1. 40-Pin Header Definition

The following figure shows the location of the 40-pin header on VisionFive 2.

Figure 1-1 40-Pin Definition

3.3V Power	1	••	2	5V Power
GPIO58 (I2C SDA)	3		4	5V Power
GPIO57 (I2C SCL)	5		6	GND
GPIO55	7		8	GPIO5 (UART TX)
GND	9		10	GPIO6 (UART RX)
GPIO42	11	• •	12	GPIO38
GPIO43	13		14	GND
GPIO47	15	(\bullet, \bullet)	16	GPIO54
3.3V Power	17	\bullet \bullet	18	GPIO51
GPIO52 (SPI MOSI)	19	••	20	GND
GPIO53 (SPI MISO)	21	• •	22	GPIO50
GPIO48 (SPI SCLK)	23	• •	24	GPIO49 (SPI CE0)
GND	25	•	26	GPIO56
GPIO45	27	••	28	GPIO40
GPIO37	29	• •	30	GND
GP1039	31	• •	32	GPIO46 (PWM0)
GPIO59 (PWM1)	33	• •	34	GND
GPIO63	35	• •	36	GPIO36
GPIO60	37	• •	38	GPIO61
GND	39	• •	40	GPIO44

2. GPIO Pinout

The following table describes the GPIO pinout, the map, and the explanation of what each pin can do.

Sys	dts	GPIO Num	Pin Name	Pin Num	Pin Num	Pin Name	GPIO Num	dts	Sys
		N/A	+3.3V	1	2	+5V	N/A		
i2c-0	i2c0	58	GPIO58 (I2C SDA)	3	4	+5V	N/A		
i2c-0	i2c0	57	GPIO57 (I2C SCL)	5	6	GND	N/A	0	
55		55	GPIO55	7	8	GPIO5 (UART TX)	5	uart0	ttyS0
		N/A	GND	9	10	GPIO6 (UART RX)	6	uart0	ttyS0
42	1	42	GPIO42	11	12	GPIO38	38		38
43		43	GPIO43	13	14	GND	N/A		
47		47	GPIO47	15	16	GPIO54	54		54
		N/A	+3.3V	17	18	GPIO51	51		51
spidev1.0	spi0	52	GPIO52 (SPI MOSI)	19	20	GND	N/A		
spidev1.0	spi0	53	GPIO53 (SPI MISO)	21	22	GPIO50	50		50
spidev1.0	spi0	48	GPIO48 (SPI SCLK)	23	24	GPIO49 (SPI CE0)	49	spi0	spidev1.0
		N/A	GND	25	26	GPIO56	56		56
45		45	GPIO45	27	28	GPIO40	40		40
37		37	GPIO37	29	30	GND	N/A		
39		39	GPIO39	31	32	GPIO46 (PWM0)	49		pwm0
pwm1		59	GPIO59 (PWM1)	33	34	GND	N/A		
63		63	GPIO63	35	36	GPIO36	36		36
60		60	GPIO60	37	38	GPIO61	61		61
		N/A	GND	39	40	GPIO44	44		44

Table 2-1 GPIO Assignments

- The *dts* column shows the name of the node in the DTSI file (jh7110-visionfive-v2.dtsi). You can find the associated node by simply searching the name.
- The Sys column shows the pin number used when exporting the GPIO pin under the /sys/class/gpio.

3. Preparation

Before configuring and debugging the GPIOs, you need to prepare the follows:

3.1. Preparing Hardware

The following table describes hardware items to be prepared if you want to configure, debug, and test this 40-pin header by following this guide:

Туре	м/о*	Item	Notes		
General	м	VisionFive 2 single board computer	-		
General	М	 32 GB (or more) micro-SD card micro-SD card reader Computer (Windows/macOS/Linux) USB to serial converter (3.3 V I/O) Ethernet cable Power adapter (5 V / 3 A) USB Type-C Cable 	These items are used for flashing Debian OS into a micro-SD card.		
GPIO	0	An oscilloscope	The oscilloscope is used to verify the GPIO volt- age.		
12C	0	Sense Hat (B)Dupont Line			
SPI	0	• ADXL345 Module • Dupont Line	-		
PWM	0	An oscilloscope	The oscilloscope is used to measure the corre- sponding pin and check the PWM period and du- ty cycle.		
SPI LCD	0	• 2.4inch LCD Module • Dupont Line	-		
UART	0	• GNSS HAT • Dupont Line	This is a GNSS HAT based on MAX-7Q, which supports positioning systems including GPS, GLON-ASS, QZSS, and SBAS. It features accurate and fast positioning with minor drifting, low power consumption, outstanding ability for anti-spoofing and anti-jamming, and so on. For detailed specifications, refer to MAX-7Q GNSS HAT.		

Table 3-1 Hardware Preparation

3.2. Preparing Software

Before configuring the 40-pin header, the Debian OS needs to be flashed into the Micro-SD card, and the DTB files need to be compiled and replaced. The following procedures are provided:

3.2.1. GitHub Repository

The following table describes the GitHub Repository addresses:

Make sure you have switched to the corresponding branch.

Туре	Repository	Branch
Linux	Linux	JH7110_VisionFive2_devel
DTS Files under Linux Repository	 jh7110.dtsi jh7110-visionfive-v2.dts jh7110-visionfive-v2.dtsi 	
Uboot	<u>Uboot</u>	JH7110_VisionFive2_devel
OpenSBI	<u>OpenSBI</u>	master
Debian	<u>Debian</u>	-

Table 3-2 GitHub Repository Addresses

3.2.2. Flashing Debian OS to a Micro-SD Card

Two methods are provided to flash images. One is for Mac/Linux, the other is for Windows. For detailed instructions on flashing Debian OS to a Micro-SD card, refer to *Flashing OS to a Micro-SD Card* section in <u>VisionFive 2 Single Board Computer Quick Start</u> <u>Guide</u>.

3.2.3. Generating DTB

To compile the device tree sources (.dtsi files) into device tree blobs (.dtb files) using the device tree compiler (DTC), execute the following command under the root directory of Linux:

make <Configuration_File> ARCH=riscv CROSS_COMPILE=riscv64-linux-gnumake CROSS_COMPILE=riscv64-linux-gnu- ARCH=riscv dtbs

Tip:

To install crossbuild-essential-riscv64 package, execute the following command:

sudo apt-get install crossbuild-essential-riscv64

<Configuration_File>: Both starfive_jh7110_defconfig and starfive_visionfive2_defconfig are applicable.

The following is the example command:

make starfive_jh7110_defconfig ARCH=riscv CROSS_COMPILE=riscv64-linux-gnumake CROSS_COMPILE=riscv64-linux-gnu- ARCH=riscv dtbs

Different boards use different dtb files:

| 3 - Preparation

- jh7110-visionfive-v2.dtb: for version 1.2A and 1.3B board.
- jh7110-visionfive-v2-ac108.dtb: for version 1.2A and 1.3B board with ac108 codec.
- jh7110-visionfive-v2-wm8960.dtb: for version 1.2A and 1.3B board with wm8960 codec.

```
i Tip:
```

You can refer to the silk print on the board for the version information.

3.2.4. Replacing DTB

Two methods are provided for replacing DTB files:

- Method 1: Directly Replacing DTB File (on page 12)
- Method 2: Adding Startup Item (on page 13)

3.2.4.1. Method 1: Directly Replacing DTB File

Prerequisite

Make sure you have executed the steps in Generating DTB (on page 11).

Execute the following steps under the root directory of Linux to replace the DTB file:

1. Insert the micro-SD card to the PC with Ubuntu system, and execute the following command to check the SD card partition:

sudo fdisk -l

Example Output:

Start	End	Sectors	Size	Туре
4096	8191	4096	2M	unknown
8192	16383	8192	4M	unknown
16384	221183	204800	100M	EFI System
221184	4503518	4282335	2G	Linux filesystem
	Start 4096 8192 16384 221184	Start End 4096 8191 8192 16383 16384 221183 221184 4503518	Start End Sectors 4096 8191 4096 8192 16383 8192 16384 221183 204800 221184 4503518 4282335	Start End Sectors Size 4096 8191 4096 2M 8192 16383 8192 4M 16384 221183 204800 100M 221184 4503518 4282335 2G

In this output, the /dev/sdc3 partition is the SD card partition.

2. Mount the SD card partition under the mnt file path by executing:

sudo mount /dev/sdc3 /mnt

3. Execute the following commands under the Linux root directory:

sudo cp arch/riscv/boot/dts/starfive/<DTB_File> /mnt/dtbs/starfive

Tip:

Different boards use different dtb files:

• jh7110-visionfive-v2.dtb: for version 1.2A and 1.3B board.

- jh7110-visionfive-v2-ac108.dtb: for version 1.2A and 1.3B board with ac108 codec.
- \circ jh7110-visionfive-v2-wm8960.dtb: for version 1.2A and 1.3B board with wm8960 codec.

Tip: You can refer to the silk print on the board for the version information.

Example Command:

sudo cp arch/riscv/boot/dts/starfive/jh7110-visionfive-v2.dtb /mnt/dtbs/starfive

4. Enter /mnt and modify the configuration file (uEnv.txt) by executing:

cd /mnt
sudo vim uEnv.txt
fdtfile=starfive/<DTB_File>

Example Command:

cd /mnt sudo vim uEnv.txt fdtfile=starfive/jh7110-visionfive-v2.dtb

Figure 3-1 Example

fdt_high=0xffffffffffffff
initrd_high=0xfffffffffffffff
kernel_addr_r=0x44000000
kernel_comp_addr_r=0x90000000
kernel_comp_size=0x10000000
fdt_addr_r=0x48000000
ramdisk_addr_r=0x48100000
Move distro to first boot to speed up booting
boot_targets=distro mmc0 dhcp
Fix wrong fdtfile name
fdtfile=starfive/jh7110-visionfive-v2.dtb
Fix missing boolemd
<pre>bootcmd=run load_distro_uenv;run bootcmd_distro</pre>

5. Unmount the /mnt directory:

sudo umount /mnt

6. Remove the micro-SD card from PC and insert it into VisionFive 2, and power on VisionFive 2.

Note:

You can also replace the DTB file by performing the following steps:

- 1. Directly copy the DTB file to the /boot/dtbs/starfive directory under the Debian system using a USB drive or through SCP
- 2. Modify the configuration file uEnv.txt. See Step 4 (on page 13).

3.2.4.2. Method 2: Adding Startup Item

Prerequisite

Make sure you have executed the steps in Generating DTB (on page 11).

Perform the following steps to replace the DTB file by adding startup item:

1. Insert the micro-SD card to the PC with Ubuntu system, and execute the following command to check the SD card partition:

sudo fdisk -l

Example Output:

Start	End	Sectors	Size	Туре	3
4096	8191	4096	2M	unkr	nown
8192	16383	8192	4M	unkr	nown
16384	221183	204800	100M	EFI	System
	Start 4096 8192 16384	StartEnd4096819181921638316384221183	Start End Sectors 4096 8191 4096 8192 16383 8192 16384 221183 204800	Start End Sectors Size 4096 8191 4096 2M 8192 16383 8192 4M 16384 221183 204800 100M	Start End Sectors Size Type 4096 8191 4096 2M unkr 8192 16383 8192 4M unkr 16384 221183 204800 100M EFI

| 3 - Preparation

/dev/sdc4 221184 4503518 4282335 2G Linux filesystem

In this output, the /dev/sdc3 partition is the SD card partition.

2. Mount the SD card partition under the mnt file path by executing:

sudo mount /dev/sdc3 /mnt

3. Execute the following commands under the Linux root directory:

```
sudo cp arch/riscv/boot/dts/starfive/<DTB_File> /mnt/dtbs/starfive
sudo umount /mnt
```

i Tip:

Different boards use different dtb files:

- $^\circ$ jh7110-visionfive-v2.dtb: for version 1.2A and 1.3B board.
- jh7110-visionfive-v2-ac108.dtb: for version 1.2A and 1.3B board with ac108 codec.
- jh7110-visionfive-v2-wm8960.dtb: for version 1.2A and 1.3B board with wm8960 codec.

i Tip:

You can refer to the silk print on the board for the version information.

Example Command:

sudo cp arch/riscv/boot/dts/starfive/jh7110-visionfive-v2.dtb /mnt/dtbs/starfive

4. Open extlinux.conf by executing:

sudo vim /mnt/extlinux/extlinux.conf

5. Added the following lines, save and exit:

```
label 11
menu label Debian GNU/Linux bookworm/sid 5.15.0-starfive (customized)
linux /vmlinuz-5.15.0-starfive
initrd /initrd.img-5.15.0-starfive
fdt /dtbs/starfive/<DTB_File>
append root=/dev/mmcblklp4 rw console=tty0 console=ttyS0,115200 earlycon rootwait
stmmaceth=chain_mode:1 selinux=0
label llr
menu label Debian GNU/Linux bookworm/sid 5.15.0-starfive (customized)(rescue target)
linux /vmlinuz-5.15.0-starfive
initrd /initrd.img-5.15.0-starfive
fdt /dtbs/starfive/<DTB_File>
append root=/dev/mmcblklp4 rw console=tty0 console=ttyS0,115200 earlycon rootwait
```

stmmaceth=chain_mode:1 selinux=0 single

- 6. Remove the micro-SD card from PC and insert it into VisionFive 2, and power on VisionFive 2.
- 7. You will see the customized menu item, for example, **Debian GNU/Linux bookworm/sid 5-15-0-starfive (customized)**, in the U-Boot startup menu. Select this item.

4. GPIO Operations

This section provides commands to configure GPIO:

4.1. Configuring GPIO

1. To configure GPIO, perform the following:

Execute the following command to configure GPIO44:

cd /sys/class/gpio echo 44 > export

2. Locate to the GPIO44 directory:

cd gpio44

In this command, 44 represents the Sys number of the pin. For more information, see GPIO Pinout (on page 9).

3. Configure the direction of GPIO44 as in:

echo in > direction

4. Alternatively, configure the direction of GPIO44 as out:

echo out > direction

5. Configure the voltage level of GPIO44 as high:

echo 1 > value

You can use an oscilloscope to check the voltage level.

6. Configure the voltage level of GPIO44 as low:

```
echo 0 > value
```

i Tip:

You can use an oscilloscope to check the voltage level.

7. Connect the 3.3V Power pin with the GPIO44, and check the voltage level of GPIO44:

cat value

8. Connect the **GND** pin with the GPIO44, and check the voltage level of GPIO44:

cat value

5. I2C Operations

This chapter describes how to configure and debug I2C GPIO.

5.1. Configuring I2C GPIO

Perform the following procedures to configure I2C:

- Hardware Setup (on page 16)
- Configuring dts File (on page 17)

5.1.1. Hardware Setup

The following table and figure describe how to connect Sense HAT to the 40-pin header:

Table 5-1 Connect Sense Hat (B) 1	to the 40-Pin Header
-----------------------------------	----------------------

Cance LIAT (D)	40-Pin GPIO Header							
Sense HAI (b)	Pin Number	Pin Name						
3V3	1	3.3V Power						
GND	9	GND						
SDA	3	GPIO58 (I2C SDA)						
SCL	5	GPI057 (I2C SCL)						

Figure 5-1 Connect Sense Hat (B) to the 40-Pin GPIO Header

5.1.2. Configuring dts File

7 channels of I2C bus are supported: i2c0 to i2c6.

The DTSI file, jh7110-visionfive-v2.dtsi, is under /linux/arch/riscv/boot/dts/starfive.

The following is the default setting. You can configure the unoccupied GPIOs as required.

Figure 5-2 Example File Content

0			
81	i2c0_p	oins: i20	c0-pins {
82		i2c0-p	bins-scl {
83			<pre>sf,pins = <pad_gpi057>;</pad_gpi057></pre>
84			<pre>sf,pinmux = <pad_gpi057_func_sel 0="">;</pad_gpi057_func_sel></pre>
85			<pre>sf,pin-ioconfig = <io(gpio_ie(1) (gpio_pu(1)))="" ="">;</io(gpio_ie(1)></pre>
86			<pre>sf,pin-gpio-dout = <gp0_low>;</gp0_low></pre>
87			<pre>sf,pin-gpio-doen = <oen_i2c0_ic_clk_oe>;</oen_i2c0_ic_clk_oe></pre>
88			sf,pin-gpio-din = <gpi_i2c0_ic_clk_in_a>;</gpi_i2c0_ic_clk_in_a>
89		};	
90			
91		i2c0-p	pins-sda {
92			<pre>sf,pins = <pad_gpi058>;</pad_gpi058></pre>
93			<pre>sf,pinmux = <pad_gpi058_func_sel 0="">;</pad_gpi058_func_sel></pre>
94			<pre>sf,pin-ioconfig = <io(gpi0_ie(1) (gpi0_pu(1)))="" ="">;</io(gpi0_ie(1)></pre>
95			<pre>sf,pin-gpio-dout = <gpo_low>;</gpo_low></pre>
96			<pre>sf,pin-gpio-doen = <oen_i2c0_ic_data_oe>;</oen_i2c0_ic_data_oe></pre>
97			<pre>sf,pin-gpio-din = <gpi_i2c0_ic_data_in_a>;</gpi_i2c0_ic_data_in_a></pre>
98		};	
99	};		
100			

Note:

The I2C GPIO pin number is the number indicated in the **Pin Name**. For more details about the GPIO Pin Name, see the <u>GPIO Pinout (on page 9)</u> in this document. The pin names of the I2C GPIO are listed as follows:

- GPIO58 (I2C SDA)
- GPIO57 (I2C SCL)

5.2. Debugging I2C GPIO

Perform the following steps to debug I2C:

1. Execute the following command to scan the bus:

```
i2cdetect -1
```

Result:

```
Figure 5-3 Example Output
```

root@st	arfive:~#	i2cdetect -l	
i2c-0	i2c	Synopsys DesignWare I2C adapter	I2C adapter
i2c-2	i2c	Synopsys DesignWare I2C adapter	I2C adapter
i2c-5	i2c	Synopsys DesignWare I2C adapter	I2C adapter
i2c-б	i2c	Synopsys DesignWare I2C adapter	I2C adapter
i2c-7	i2c	Inno HDMI	I2C adapter

2. Execute the following command to detect the device:

```
i2cdetect -y -r 0
```


0 is the I2C bus number.

Result:

Figur	e 5-4	Exam	ple C	Jutpu	It												
гоо	t@st	tari	five	e:~#	‡ 12	2cde	ete	ct ·	-y ·	-r (9						
	0	1	2	3	4	5	б	7	8	9	а	b	С	d	e	f	
00:																	
10:																	
20:										29							
30:																	
40:									48								
50:													5c				
60:									68								
70:	70																

In this figure, the detected devices are 0x29, 0x48, 0x5c, 0x68, and 0x70.

3. Execute the following command to read register content:

i2cget -f -y 0 0x5c 0x0f

- 0: I2C bus number
- 0x5c: I2C device address
- 0x0f: Memory address

Result:

Figure 5-5 Example Output

root@starfive:~# i2cget -f -y 0 0x5c 0x0f 0xb1

The register content is **0xb1** in this output.

4. Execute the following command to write register data:

i2cset -y 0 0x5c 0x11 0x10

i Tip:

- 0: I2C bus number.
- 0x5c: I2C device address.
- 0x11: Memory address.
- $\circ\,$ 0x10: The content to be written in the register.
- 5. Execute the following to read all register values:

i2cdump -y 0 0x5c

Tip:

- 0: I2C bus number
- 0x5c: I2C device address

Result:

Figure 5-6 Example Output

гос	ot@si	tari	five	e:~#	# i2	2cdı	JMD	- y	0 (9x50	2						
No	size	e sj	pec	ifi	ed ((usi	ing	byt	te-o	data	a ac	ces	ss)				
	0	1	2	3	4	5	б	7	8	9	а	b	С	d	e	f	0123456789abcdef
00:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	b1	?
10	00	10	00	00	00	00	00	00	00	00	00	00	01	b1	68	бе	.???hn
20:	00	00	00	00	00	00	00	02	71	8f	2f	00	00	00	00	00	?q?/
30:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
40	72	e4	03	20	8a	0f	05	49	00	06	27	7b	8b	11	0Ь	44	r?? ???Ι.?'{???D
50:	42	fd	7b	0e	00	71	8f	2f	06	03	15	0a	b9	04	80	C 0	B?{?.q?/????????
60	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	· · · · · · · · · · · · · · · · · · ·
70:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
80:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	b1	· · · · · · · · · · · · · · · · · · ·
90:	00	10	00	00	00	00	00	00	00	00	00	00	01	b1	68	бе	(.???hn
a0:	00	00	00	00	00	00	00	00	71	8f	2f	00	00	00	00	00	q?/
b0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
C0:	72	e4	03	20	8a	0f	05	49	00	06	27	7b	8b	11	0b	44	r?? ???I.?'{???D
d0:	42	fd	7b	0e	00	71	8f	2f	06	03	15	0a	b9	04	80	C 0	B?{?.q?/????????
e0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
f0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	<i></i>

6. SPI Operations

This chapter describes how to configure and debug SPI GPIO.

6.1. Configuring SPI GPIO

The DTSI file, jh7110-visionfive-v2.dtsi, is under /linux/arch/riscv/boot/dts/starfive.

7 channels of SPI bus are supported: spi0 to spi6.

6.1.1. Modify Pins

The configured SPI GPIO number is the number indicated in the Pin Name. For more details about the GPIO Pin Name, see the <u>GPIO Pinout (on page 9)</u> in this document. You can configure the unoccupied pins. The following are the default settings in the jh7110-visionfive-v2.dtsi:

Figure 6-1 ivioaity Pin	Figure	6-1	Modify	Pins
-------------------------	--------	-----	--------	------

187	ssp0_pins: ssp0)-pins {
188	ssp0-pi	ins_tx {
189		<pre>sf,pins = <pad_gpi052>;</pad_gpi052></pre>
190		<pre>sf,pinmux = <pad_gpi052_func_sel 0="">;</pad_gpi052_func_sel></pre>
191		<pre>sf,pin-ioconfig = <io(gpi0_ie(1))>;</io(gpi0_ie(1))></pre>
192		<pre>sf,pin-gpio-dout = <gp0_spi0_ssptxd>;</gp0_spi0_ssptxd></pre>
193		<pre>sf,pin-gpio-doen = <oen_low>;</oen_low></pre>
194	};	
195		
196	ssp0-pi	lns_rx {
197		<pre>sf,pins = <pad_gpi053>;</pad_gpi053></pre>
198		<pre>sf,pinmux = <pad_gpi053_func_sel 0="">;</pad_gpi053_func_sel></pre>
199		<pre>sf,pin-ioconfig = <io(gpi0_ie(1))>;</io(gpi0_ie(1))></pre>
200		<pre>sf,pin-gpio-doen = <oen_high>;</oen_high></pre>
201		<pre>sf,pin-gpio-din = <gpi_spi0_ssprxd>;</gpi_spi0_ssprxd></pre>
202	<pre>};</pre>	
203		
204	ssp0-pi	ins_clk {
205		<pre>sf,pins = <pad_gpi048>;</pad_gpi048></pre>
206		<pre>sf,pinmux = <pad_gpi048_func_sel 0="">;</pad_gpi048_func_sel></pre>
207		<pre>sf,pin-ioconfig = <io(gpi0_ie(1))>;</io(gpi0_ie(1))></pre>
208		<pre>sf,pin-gpio-dout = <gp0_spi0_sspclkout>;</gp0_spi0_sspclkout></pre>
209		sf,pin-gpio-doen = <oen_low>;</oen_low>
210	};	
211		
212	ssp0-pi	.ns_cs {
213		<pre>sf,pins = <pad_gpi049>;</pad_gpi049></pre>
214		<pre>sf,pinmux = <pad_gpi049_func_sel 0="">;</pad_gpi049_func_sel></pre>
215		<pre>sf,pin-ioconfig = <io(gpi0_ie(1))>;</io(gpi0_ie(1))></pre>
216		<pre>sf,pin-gpio-dout = <gp0_spi0_sspfssout>;</gp0_spi0_sspfssout></pre>
217		sf,pin-gpio-doen = <oen_low>;</oen_low>
218	};	
210	1.	

6.2. Debugging SPI GPIO

This section provides steps for loopback test and testing SPI with the ADXL345 module.

6.2.1. Loopback Test

The following steps are provided for the loopback test:

1. Wiring: Connect Pin19 with Pin 21 as the following:

2. Locate to the following path for the test tool, spidev_test.c:

cd /linux/tools/spi

3. Execute the following command under the test tool directory:

make CROSS_COMPILE=riscv64-linux-gnu- ARCH=riscv

Result:

The output file is spidev_test in the same directory.

4. Upload spidev_test to VisionFive 2, and change the execution permission by executing the following:

chmod +x spidev_test

5. Confirm the SPI device.

ls /dev/spidev*

Result:

Figure 6-3 Example Output root@starfive:~# ls /dev/spi* /dev/spidev1.0 root@starfive:~#

In this output, spidev1.0 is the device name.

6. Execute the following command to perform the test:

./spidev_test -D /dev/spidev1.0 -v -p string_to_send

i Tip:

 ${\tt spidev1.0}$ is the device name got from the previous step.

Result:

In this figure, the **TX** and **RX** output are the same, which indicates the test is successful.

6.2.2. Testing SPI with ADXL345 Module

Perform the following steps to test SPI with the ADXL345 module:

1. Connect the ADXL345 module to the 40-pin header as the following:

Figure 6-5 Connect ADXL345 Module to the Header

2. Locate to the following path for test tool, spidev_test.c:

cd /linux/tools/spi

3. Execute the following command under the test tool directory:

make CROSS_COMPILE=riscv64-linux-gnu- ARCH=riscv

Result:

The output file is spidev_test in the same directory.

4. Upload spidev_test to VisionFive 2, and change the execution permission by executing the following:

| 6 - SPI Operations

chmod +x spidev_test

5. Confirm the SPI device.

ls /dev/spidev*

Figure 6-6 Example Output

root@starfive:~# ls /dev/spi* /dev/spidev1.0 root@starfive:~#

In this output, spidev1.0 is the device name.

6. Execute the following to read the device ID:

./spidev_test -H -O -D /dev/spidev1.0 -v -p \\x80\\x00

7. Execute the following to read the value for multiple registers:

8. Execute the following to read:

./spidev_test -H -O -D /dev/spidev1.0 -v -p \\x9e\\x00

9. Execute the following to write:

./spidev_test -H -O -D /dev/spidev1.0 -v -p \\x1e\\xaa

10. Execute the following to read the verification:

./spidev_test -H -O -D /dev/spidev1.0 -v -p \\x9e\\x00

7. PWM Operations

This chapter describes how to configure and debug PWM GPIO:

7.1. Configuring PWM GPIO

The DTSI file, jh7110-visionfive-v2.dtsi, is under /linux/arch/riscv/boot/dts/starfive.

8 channels of PWM are supported at the most.

7.1.1. Modify Pin

The following figure shows the example file content to modify the pin:

169	pwm_pins: pwm-pins {
170	pwm_ch0-pins {
171	<pre>sf,pins = <pad_gpi046>;</pad_gpi046></pre>
172	<pre>sf,pinmux = <pad_gpi046_func_sel 0="">;</pad_gpi046_func_sel></pre>
173	<pre>sf,pin-ioconfig = <io(gpi0_ie(1))>;</io(gpi0_ie(1))></pre>
174	<pre>sf,pin-gpio-dout = <gp0_ptc0_pwm_0>;</gp0_ptc0_pwm_0></pre>
175	<pre>sf,pin-gpio-doen = <oen_ptc0_pwm_0_oe_n>;</oen_ptc0_pwm_0_oe_n></pre>
176	};
177	
178	pwm_ch1-pins {
179	<pre>sf,pins = <pad_gpi059>;</pad_gpi059></pre>
180	<pre>sf,pinmux = <pad_gpi059_func_sel 0="">;</pad_gpi059_func_sel></pre>
181	<pre>sf,pin-ioconfig = <io(gpi0_ie(1))>;</io(gpi0_ie(1))></pre>
182	<pre>sf,pin-gpio-dout = <gp0_ptc0_pwm_1>;</gp0_ptc0_pwm_1></pre>
183	<pre>sf,pin-gpio-doen = <oen_ptc0_pwm_1_oe_n>;</oen_ptc0_pwm_1_oe_n></pre>
184	}; ////////////////////////////////////
185	;

Figure 7-1 Example File Content

The configured PWM GPIO number is the number contained in the **Pin Name**. For more details about the GPIO Pin Name, see the <u>GPIO Pinout (on page 9)</u> in this document.

7.1.2. PWM and Pin Name Mapping

The following table describes the PWM and pin name mapping:

PWM	GPIO (Pin Name)
PWM0	GPIO46
PWM1	GPIO59

7.2. Debugging PWM GPIO

This section describes how to debug PWM GPIO:

1. Execute the following to configure the PWM channel:

```
cd /sys/class/pwm/pwmchip0
echo 0 > export
```

2. Execute the following to configure the PWM period:

| 7 - PWM Operations

cd pwm0 echo 5000000 > period

3. Execute the following to configure the PWM duty cycle:

echo 1000000 > duty_cycle

4. Use an oscilloscope to measure the corresponding pin and check the PWM period and duty cycle.

A duty cycle is the fraction of one period in which a signal or system is active.

8. UART Operations

This chapter describes how to configure and debug UART GPIO:

8.1. Configuring UART GPIO

The DTSI file, jh7110-visionfive-v2.dtsi, is under /linux/arch/riscv/boot/dts/starfive.

6 channels of UART are supported at the most.

The configured UART GPIO number is the number contained in the **Pin Name**. For more details about the GPIO Pin Name, see the <u>GPIO Pinout (on page 9)</u> in this document.

8.1.1. Modifying dts

To modify dts file, perform the following steps:

1. Add aliases of uart1 or uart2 on the aliases node. The following is an example:

```
Figure 8-1 Example Configuration
```

```
aliases {
    spi0 = &qspi;
    gpio0 = &gpio;
    ethernet0 = &gmac0;
    ethernet1 = &gmac1;
    mmc0 = &sdio0;
    mmc1 = &sdio1;
    serial0 = &uart0;
    serial1 = &uart1;
    serial2 = &uart2;
    serial3 = &uart3;
```

2. Add uart1 or uart2 node on the dts. The following is an example:

Figure 8-2 Example Configuration

```
&uart0 {
    pinctrl-names = "default";
    pinctrl-0 = <&uart0_pins>;
    status = "okay";
};
&uart1 {
    pinctrl-names = "default";
    pinctrl-0 = <&uart1_pins>;
    status = "okay";
};
&uart2 {
    pinctrl-names = "default";
    pinctrl-0 = <&uart2_pins>;
    status = "okay";
};
```

8 - UART Operations

3. Add uart1_pins or uart2_pins node on the &gpio node:

Note:

The configured UART GPIO number is the number contained in the **Pin Name**. You can configure the unoccupied pins. For more details about the GPIO Pin Name, see the GPIO Pinout (*on page 9*) in this document.

Figure 8-3 Example Configuration

8.1.1.1. UART and DEV Mapping

The following table describes the UART and DEV mapping:

Table 8-1 UA	RT and DE	V Mapping
--------------	-----------	-----------

UART	DEV
UART1	/dev/ttyS1
UART2	/dev/ttyS2

8.2. Debugging UART GPIO

8.2.1. Hardware Setup

To set up the hardware, perform the following steps:

1. Connect the jumper wires from the USB-to-Serial Converter to the 40-Pin GPIO header of the VisionFive 2 as follows.

Figure 8-4 Connect the Converter to the Header

3.3V Power	1	• •		2	5V Power		
GPIO58 (I2C SDA)	3	• •		4	5V Power		
GPIO57 (I2C SCL)	5	• •		6	GND		
GPIO55	7	• •		8	GPIO5 (UART TX)		
GND	9	• •		10	PIO6 (UART RX)		
GPIO42	11	• •		12	GPIO38		
GPIO43	13	• •		14	GND		
GPIO47	15	• •		16	GPIO54		
3.3V Power	17	• •		18	GPIO51		
GPIO52 (SPI MOSI)	19	• •		20	GND		
GPIO53 (SPI MISO)	21	• •		22	GPIO50		
GPIO48 (SPI SCLK)	23	• •		24	GPIO49 (SPI CE0)		
GND	25	• •		26	GPIO56		
GPIO45	27	• •		28	GPIO40		
GPIO37	29	• •		30	GND		
GPIO39	31	• •		32	GPIO46 (PWM0)		
GPIO59 (PWM1)	33	• •		34	GND		
GPIO63	35	0	_	30	CP103C		
GPIO60	37	0 =	-	30	CPIO61		
GND	39	0	_	40	GPI044		

2. Connect the other end of the USB-to-Serial Converter to your device (Windows/Mac/Linux).

8.2.2. Debugging UART Send and Receive Functions

1. Configure VisionFive 2 Minicom:

sudo minicom -s

2. Select Serial port setup, and configure Minicom as follows:

Figure 8-5 Example Configuration

A - Serial Device	/dev/ttyS2	
C - Callin Program D - Callout Program E - Bps/Par/Bits F - Hardware Flow Control G - Software Flow Control	115200 8N1 No No	
Change which setting?		
Screen and keyboard Save setup as dfl Save setup as Exit Exit from Minicom	d	

3. Start VisionFive 2 minicom by typing the following command on the PC:

minicom -o -D /dev/ttyS1

Figure 8-7 Example Output

4. Configure Ubuntu minicom by typing the following:

sudo minicom -s

5. Select Serial port setup, and configure minicom as follows:

Figure 8-8 Example Configuration

A - Serial Device B - Lockfile Location	: /dev/ttyUSB0 : /var/lock	
C - Callin Program	:	
D - Callout Program	: 115300 0N1	
E - Hardware Flow Contro	115200 8N1	
G - Software Flow Contro	ol : No	
Change which setting?	2	
Change which setting? Screen and keybo	pard	
Change which setting? Screen and keybo Save setup as df	pard Fl	
Change which setting? Screen and keybo Save setup as df Save setup as	pard Fl	
Change which setting? Screen and keybo Save setup as df Save setup as Exit	pard Fl I	

Note:

Serial Device can be detected by command <code>dmesg | grep tty</code> on Ubuntu

Figure 8-10 Example Command and Output

xiangyao@xiangyao-VirtualBox:~\$ dmesg grep tty
<pre>[0.158110] printk: console [tty0] enabled</pre>
<pre>[5.322731] ttyS2: LSR safety check engaged!</pre>
[5.323281] ttyS2: LSR safety check engaged!
[91855.795788] usb 1-2: pl2303 converter now attached to ttyUSB0
[92154.097583] ttyS2: LSR safety_check engaged!

6. Start Ubuntu minicom, you can see as follows:

Figure 8-11 Example Output

| 8 - UART Operations

7. To test UART send function, you can input characters, such as hello ubuntu, on the VisionFive 2 minicom. Then you will see the character are outputted on the Ubuntu minicom as the following:

Figure 8-12 Test UART Send	
Welcome to minicom 2.7.1	Welcome to minicom 2.8
OPTIONS: I18n Compiled on Aug 13 2017, 15:25:34. Port /dev/ttyUSB0, 14:45:50	OPTIONS: I18n Port /dev/ttyS1, 06:51:52
Press CTRL-A Z for help on special keys	Press CTRL-A Z for help on special keys
Hello Ubuntu	1

- $^{\circ}\,$ Figure on the Left: Ubuntu minicom interface
- Figure on the Right: VisionFive 2 minicom interface

Test UART Receive:

8. To test UART receive, you can input characters, such as hello visionfive on the Ubuntu minicom. Then you will see the characters are outputted on the VisionFive 2 minicom:

Figure 8-13 Test UART Receive	
Welcome to minicom 2.7.1	Welcome to minicom 2.8
OPTIONS: I18n Compiled on Aug 13 2017, 15:25:34. Port /dev/ttyUSB0, 14:55:25	OPTIONS: I18n Port /dev/ttyS1, 06:53:47
Press CTRL-A Z for help on special keys	Press CTRL-A Z for help on special keys
	Hello VisionFive

- Figure on the Left: Ubuntu minicom interface
- Figure on the Right: VisionFive 2 minicom interface

9. Peripheral Examples

In this demo, Sense Hat (B) is used. For the detailed specifications, refer to https://www.waveshare.com/wiki/Sense_HAT_(B).

The official libraries of BCM2835, Python, and wiringPi are not supported, and we use the system call instead. The examples are required to be modified.

9.1. Sense Hat (B) Example

9.1.1. Hardware Setup

The following table and figure describe how to connect Sense HAT to the 40-pin header:

Table 9-1 Connect Sense Hat (B) to the 40-Pin Heade

Sense HAT (B)	Pin Number
3V3	1
GND	9
SDA	3
SCL	5

Figure 9-1 Connect Sense Hat (B) to the 40-Pin Header

Figure 9-2 Connect Sense Hat (B) to the 40-Pin Header

9.1.2. Running Example with Sense Hat (B)

Take SHTC3 sensor as an example:

- 1. Download the source code from: <u>SHTC3_dev.c</u>
- 2. (Optional) Install the tool to compile. The following is an example to install:

sudo apt-get install gcc-riscv64-linux-gnu

This step can be skipped if the tool has been installed.

3. Execute the following to compile:

riscv64-linux-gnu-gcc SHTC3_dev.c -o shtc3

Result:

The output file is shtc3 in the same directory.

4. Copy the executable code from the shtc3 file to the board, and change the execution permission by executing the following command:

chmod +x shtc3

5. Execute the following command to run:

./shtc3

Result:

The following output indicates the execution is successful:

root@starfive:~# ./shtc3

```
SHTC3 Sensor Test Program ...
Fopen : /dev/i2c-0
```

```
      Temperature =
      52.20°C , Humidity =
      55.32%

      Temperature =
      23.81°C , Humidity =
      55.29%

      Temperature =
      23.79°C , Humidity =
      55.30%

      Temperature =
      23.82°C , Humidity =
      55.29%

      Temperature =
      23.81°C , Humidity =
      55.29%

      Temperature =
      23.81°C , Humidity =
      55.29%

      Temperature =
      23.81°C , Humidity =
      55.29%

      Temperature =
      23.82°C , Humidity =
      55.30%
```

9.2. 2.4 inch LCD Module Example

A 2.4inch LCD Module is used in this example. For the detailed specifications, refer to the following: <u>https://www.waveshare.com/wiki/2.4inch_LCD_Module</u>.

Note:

The official examples are required to be modified for this demo.

9.2.1. Hardware Setup

The following table and figure describe how to connect the 2.4inch LCD module with the 40-pin header:

2.4inch LCD Module	Pin Number
vcc	17
GND	39
DIN	19
СГК	23
CS	24
DC	40
RST	11
BL	18

Table 9-2 Connect 2.4inch LCD with 40-pin Header

Figure 9-3 Connect 2.4inch LCD with 40-Pin Header

						2.4inch LCD Module
						O VCC O GND O DIN O CLK O CS O DC O RST O BL
3.3V Power	1	•	•		2	5V Power
GPIO58 (I2C SDA)	3				4	5V Power
GPIO57 (I2C SCL)	5				6	GND
GPIO55	7				8	GPIO5 (UART TX)
GND	9				10	GPIO6 (UART RX)
GPIO42	11	0			12	GPIO38
GPIO43	13				14	GND
GPIO47	15				16	GPI054
3.3V Power	17	0	<u>୧</u>		18	GPI051
GPIO52 (SPI MOSI)	19 L	0			20	GND
GPIO53 (SPI MISO)	21				22	GPIO50
GPIO48 (SPI SCLK)	23	0	0		24	GPIO49 (SPI CEO)
GND	25				26	GPIO56
GPIO45	27				28	GPIO40
GPIO37	29			ľ	30	GND
GPIO39	31				32	GPIO46 (PWM0)
GPIO59 (PWM1)	33				34	GND
GPIO63	35				36	GPIO36
GPIO60	37				38	GPIO61
GND	39	0	0	r	40	GPIO44

9.2.2. Executing Example

Perform the following steps to execute the example:

- 1. Download the source code from <u>LCD Demo</u>.
- 2. Execute the following command to copy the code to the board. For example, VisionFive 2.

tar -xvf LCD_Demo.tar.gz
cd visionfive2/
./main 2.4

Result:

The following two figures will be displayed in turn. One is the photo of VisionFive 2, the other is the official example figure.

Figure 9-5 Example Output

