
Analysis of Running Real-
Time Linux on VisionFive 2
Version: 1.12
Date: 2024/03/27

Legal Statements
Important legal notice before reading this documentation.

PROPRIETARY NOTICE

Copyright © Shanghai StarFive Technology Co., Ltd., 2024. All rights reserved.

Information in this document is provided "as is," with all faults. Contents may be periodically
updated or revised due to product development. Shanghai StarFive Technology Co., Ltd. (hereinafter
"StarFive") reserves the right to make changes without further notice to any products herein.

StarFive expressly disclaims all warranties, representations, and conditions of any kind, whether
express or implied, including, but not limited to, the implied warranties or conditions of
merchantability, fitness for a particular purpose, and non-infringement.

StarFive does not assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation indirect, incidental, special,
exemplary, or consequential damages.

All material appearing in this document is protected by copyright and is the property of StarFive.
You may not reproduce the information contained herein, in whole or in part, without the written
permission of StarFive.

Contact Us

Address: Room 502, Building 2, No. 61 Shengxia Rd., China (Shanghai) Pilot Free Trade Zone,
Shanghai, 201203, China

Website: http://www.starfivetech.com

Email:

• Sales: sales@starfivetech.com

• Support: support@starfivetech.com

ii

http://www.starfivetech.com
mailto:sales@starfivetech.com
mailto:support@starfivetech.com

Contents

List of Tables..4

List of Figures.. 5

Legal Statements... ii

Preface.. vi

1. Introduction...8

2. Linux in Real-Time Systems... 9

2.1. Real-time systems.. 9

2.2. Real-Time Extensions... 10

2.3. Task Scheduling.. 12

2.4. Kernel Preemption... 13

2.5. Scheduling Latency...14

3. Measurement Setup.. 15

3.1. Kernel Configuration.. 15

3.2. Load Generation...15

3.3. Latency Measurement..16

4. PREEMPT_RT For RISC-V.. 18

4.1. Patch Application..18

4.2. LAZY_PREEMPT...19

5. Cyclist Test Result.. 21

5.1. General Functionality... 21

5.2. Latency Measurements.. 21

6. Analysis... 24

6.1. Latency Analysis... 24

6.2. Suitability for Real-Time Applications.. 25

6.3. Future Work... 26

7. Conclusion... 28

8. Appendix A: Real-Time Linux Defconfig... 30

9. APPENDIX B: Standard Deviation...31

3 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

Contents

List of Tables

Table 0-1 Revision History.. vi

Table 5-1 Latency Measurement Results.. 22

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

4

https://www.starfivetech.com/

Contents

List of Figures

Figure 2-1 Real-Time System Service Utility... 9

Figure 2-2 Different Architectures of Real-Time Linux Systems..11

Figure 2-3 Real-Time Scheduling Principle [6].. 12

Figure 2-4 Scheduling Latency Components...14

Figure 3-1 Cyclictest Latency Measurement... 17

Figure 9-1 Formula of Standard Deviation..31

5 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

Preface
About this guide and technical support information.

About this document

This thesis was written by StarFive, as a part of the JH-7110 SoC project. This thesis introduces
running RT-Linux on VisionFive 2 board, showing the performance of the RT-Linux on the VisionFive
2 board. Also, it introduces the development of the RISC-V RT-Linux. One latest and important news
is that RT-Linux is officially support RISC-V architecture starting form kernel 6.6 (LTS). Several years
later we can see RISC-V SoC will be running on industrial projects.

Revision History

Table 0-1 Revision History

Version Released Revision

1.12 2024/03/27 Updated the data in Latency Measurements (on page
21).

1.11 2024/01/25 Added the description about RT-Linux officially support
RISC-V architecture from kernel 6.6.

1.1 2023/10/31 Updated Appendix A: Real-Time Linux Defconfig (on page
30).

1.0 2023/06/13 The first official release.

Notes and notices

The following notes and notices might appear in this guide:

• Tip:
Suggests how to apply the information in a topic or step.

• Note:
Explains a special case or expands on an important point.

• Important:
Points out critical information concerning a topic or step.

vi

• CAUTION:
Indicates that an action or step can cause loss of data, security problems, or
performance issues.

• Warning:
Indicates that an action or step can result in physical harm or cause damage to
hardware.

vii

1. Introduction

This thesis was written by StarFive, as a part of the JH-7110 SoC project. This thesis introduces
running RT-Linux on VisionFive 2 board, showing the performance of the RT-Linux on the VisionFive
2 board. Also, it introduces the development of the RISC-V RT-Linux. One latest and important news
is that RT-Linux is officially support RISC-V architecture starting form kernel 6.6 (LTS). Several years
later we can see RISC-V SoC will be running on industrial projects.

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

8

https://www.starfivetech.com/

2. Linux in Real-Time Systems
Real-time systems are commonly used when a given task has to be completed within a certain
time limit. Such systems need to be very accurate, predictable, and deterministic, so these timing
requirements can be guaranteed already at the development stage. Therefore, real-time capable
operating systems need to be specially crafted for this purpose. This leads to different design
decisions and internal implementation in comparison to what would be used, for example, in GPOSs.

This chapter describes different aspects of real-time capable Linux systems and especially focuses on
the PREEMPT_RT patch. First, in Real-time systems (on page 9), the general concept of a real-
time system is explained. Afterward, in Real-Time Extensions (on page 10), multiple real-time
extensions for the Linux kernel are presented. Then, the basics of task scheduling are introduced
in Task Scheduling (on page 12). Next, different preemption settings available in Linux are
described in Kernel Preemption (on page 13). After that, various aspects of scheduling latencies
are presented in Scheduling Latency (on page 14).

2.1. Real-time systems
Real-time systems are used when the given application needs to meet some specific timing
requirements. The criticality of these requirements usually varies quite a lot, so it is common to
divide these real-time systems having different requirements into two distinct categories.

• Soft real-time systems will only have degraded results if the timing requirements

• Hard real-time systems will experience a catastrophic failure if the timing requirements are
not met.

The utility differences between these two systems are illustrated in Figure 2-1 : Real-Time System
Service Utility (on page 9). In a soft real-time system, the utility of the result is 100 % until the
deadline is reached. After that, the result starts to gradually degrade according to some application-
specific curve, eventually reaching zero at some point. This level of real-time is often relatively
easy to achieve, as occasional missing of the deadline can be accepted. Alternatively, the hard real-
time systems behave the same as soft real-time systems until the deadline is reached, but right
at this time instance, the utility of the result immediately becomes negative. This represents the
effect of catastrophic failure that the system will experience at that point. Designing hard real-time
systems is very challenging, as it must be guaranteed that the system will always meet the timing
requirements.

Figure 2-1 Real-Time System Service Utility

9 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 2 - Linux in Real-Time Systems

(a) Soft real-time system (b) Hard real-time system

Soft real-time systems can be used in many typical non-critical embedded applications that do not
have too strict timing requirements. Missing a deadline in a soft real-time system should only lead
to reduced user experience or inaccurate results at worst. For example, the timing requirements
should not be critical regarding the safety of the product under any circumstance. Hard real-time
systems, on the other hand, are required in more critical applications that cannot ever miss the
deadline in any operating conditions. Missing the deadline with these systems could even cause
significant damage to property or severe injuries.

2.2. Real-Time Extensions
Like any GPOS, the Linux kernel is mainly optimized for throughput, as that is the most important
design goal for such systems. This means that by default, unmodified Linux systems will regularly
experience significant unbounded latencies that cannot be accepted in a real-time system. However,
it is possible to add the missing real-time capabilities to the Linux kernel. This way, the operating
system can provide the best of both worlds by offering a wide range of system services and
acceptable real-time performance. Generally, there are two different ways of implementing the
real-time capabilities, either by implementing a co-kernel-based system or by patching the mainline
kernel, as presented in Figure 2-2 : Different Architectures of Real-Time Linux Systems (on page
11). In the first option, the Linux kernel is run as a normal process under a separate real-time
scheduler. When this same scheduler also handles real-time tasks and system events, the real-time
portion can be quite easily separated from the rest of the system. The second option is to leave the
underlying kernel architecture untouched and instead introduce a set of changes to the kernel itself.
In this configuration, the Linux kernel is responsible for simultaneously scheduling both normal and
real-time tasks executing within the system.

In co-kernel systems, the Linux kernel is isolated from real-time tasks in some way.

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

10

https://www.starfivetech.com/

| 2 - Linux in Real-Time Systems
Figure 2-2 Different Architectures of Real-Time Linux Systems

(a) Co-kernel (Xenomai) (b) Patch (PREEMPT_RT)

One quite popular example of such a system is the Xenomai project, utilizing an intermediate layer
between the hardware and Linux kernel, which effectively acts as an interrupt dispatcher and
scheduler. Basically, it handles the system events so that processing is always prioritized for the
highest priority real-time tasks to guarantee the specified timing requirements. Another viable
alternative is a PREEMPT_RT patched Linux, i.e., Real-Time Linux kernel. In this approach, underlying
architecture remains exactly the same before. Previously, the PREEMPT_RT introduced a very
significant number of changes to the kernel, but today many of these features have already been
merged into the mainline kernel. This work is still ongoing, but eventually the whole PREEMPT_RT
patch should be included in the mainline kernel.

Choosing between these two architectures is very much application-dependent. Typically,
approaches utilizing co-kernel can achieve slightly lower latencies. But on the other hand, the
system complexity is increased, and real-time tasks need to be specially crafted for the used real-
time kernel. That is the opposite of the PREEMPT_RT patched Linux kernel as the architecture is
simpler, and the real-time tasks can be written almost like any other regular application. Also, the
overall performance of patched Linux is on average better than what the co-kernel counter parts can
achieve.

11 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 2 - Linux in Real-Time Systems

2.3. Task Scheduling
A scheduler, in the context of operating systems, simply decides what task is executed at a given
instance of time. Often it is one of the most critical components of any operating system. Usually,
GPOSs and RTOSs have different preferences for scheduling decisions, so multiple scheduler
implementations have been developed for both cases. Having this distinction between the
categories is important, as the design goals are so different.

When designing real-time systems, the most appropriate scheduling algorithm always depends on
the situation. Perhaps the simplest, yet still useful, available real-time scheduling algorithm can be
thought of as being the fixed-priority preemptive scheduling algorithm, as illustrated in Figure 2-3
: Real-Time Scheduling Principle [6] (on page 12). In this scheduling scheme, every task gets a
static priority assigned to them at the design phase. During the system operation, the scheduler
simply guarantees that the current task always has the highest possible priority. As the scheduling
is preemptive, it means that even a task that is in the middle of executing something can be briefly
aborted to let another higher priority task execute instead.

Figure 2-3 Real-Time Scheduling Principle [6]

Compared to the previously mentioned fixed-priority preemptive scheduling algorithm the Linux
scheduler is a bit more complicated, but fundamentally it handles real-time tasks quite similarly.
The Linux scheduler implements several scheduling policies which can be divided into non-real-time
and real-time scheduling groups. Normal applications typically execute with one of the non-real-
time policies, and they will always have lower priority than tasks running with any of the real-time
policies. The Linux scheduler supports three distinct real-time policies that can be assigned to any
task requiring a real-time priority.

• SCHED_FIFO: a task running with this policy gets to execute until it finishes and voluntarily
preempts, or a higher priority task preempts it.

• SCHED_RR: tasks are only allowed to run at maximum with a specified time slice before being
preempted if not preempted by higher-priority task.

• SCHED_DEADLINE: is a policy implementing a task execution deadline-based scheduling
algorithm.

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

12

https://www.starfivetech.com/

| 2 - Linux in Real-Time Systems

All tasks executing with any of the real-time policies have a static real-time priority as signed to
them. With SCHED_FIFO or SCHED_RR policies, this priority can be between 1 (low) and 99 (high).
A task with SCHED_DEADLINE is always executed with an effective priority of 100 having the highest
priority possible. Any task executed with higher priority will always have precedence over another
task with lower priority. With these policies, it is possible to carefully design the execution of a real-
time system to meet even demanding timing requirements.

2.4. Kernel Preemption
The mainline Linux kernel currently has three preemption settings available: server, desktop,
and low-latency desktop. With the introduction of the PREEMPT_RT patch, a fourth real-time
option becomes available. By using these options, it is possible to trade throughput for latency
determinism. These options are described in the following list ordered from worst to best in terms
of real-time performance.

• Server is the traditional preemption model. With this selection, the kernel code is executed
with preemption disabled for the maximum throughput.

• Desktop preemption model adds explicit preemption points to the kernel code. This option
provides better responsiveness at the cost of slightly lower throughput.

• Low-Latency Desktop reduces the latencies by making all normal kernel code preemptible.
This setting allows better reaction times to interactive events.

• Real-Time option practically makes the whole kernel preemptible, including the most critical
sections. This option is available only when the PREEMPT_RT patch is applied.

As the preemption option names suggest, each one of these settings has an appropriate use
case. The server preemption can be used in server installations where throughput is the single
most important figure. On the other hand, real-time preemption should be used in embedded
systems where the absolute throughput is not critical but rather the maximum experienced
latency is. Therefore, different preemption levels in Linux allow for great flexibility to be utilized
in varying environments, i.e., the same operating system can be used in servers and embedded
systems. Overall, this synergy is very beneficial for the whole ecosystem as improvements or fixes
implemented for server systems can be also automatically applied for small embedded devices.

Even if some of the preemption settings claim to have reduced latency, in practice, the real-
time setting is the only viable option for any real-time system. In this configuration, the majority
of spinlocks are converted to normal sleeping locks, interrupt handlers are threaded, and
high-resolution timers are used for precise timing. Additionally, there are some other more
insignificant changes introduced. With these improvements, practically the whole kernel is
completely preemptible. Only things like very low-level event handling are executed in a non-
preemptible context. Altogether, the real-time preemption model significantly improves the system
responsiveness but decreases the overall performance as every introduced change causes some
additional overhead.

13 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 2 - Linux in Real-Time Systems

2.5. Scheduling Latency
Scheduling latency measures the elapsed time from an external event or an interrupt to the start
of the execution of the related task. Usually, this would mean, for example, a delay between a
timer interrupt and the beginning of executing some periodic task. The scheduling latency is often
the single most important value to evaluate when observing a system’s real-time performance.
Basically, it combines all sources of latencies into a single variable that is easy to analyze, measure,
and compare.

However, for a more detailed analysis, it is often required to individually study the different parts
of the scheduling latency. These separate elements are listed in Figure 2-4 : Scheduling Latency
Components (on page 14). The first cause of latency always happens right after the interrupt
at the hardware level. Typically, the actual latency caused by hardware is very minimal, just a few
clock cycles, but at this stage, additional delay can be experienced if the system interrupts are
completely disabled. This can sometimes extend longer periods and is dependent on the currently
executing software. The next cause of latency is the immediate interrupt handling routine. Often
this part can contain some additional operating system logic, but in general, it is kept as short as
possible in real-time systems. After the interrupt is handled, a decision about the next executing task
can be done in the scheduler. The scheduler itself is most of the time quite fast, but again at this
point, previously running software can cause additional latencies. If the preemption is disabled, the
previously executed program is at this point resumed and executed until the preemption is again
enabled. Finally, after these steps, the scheduler can schedule a task corresponding to the interrupt
by performing a context switch.

Figure 2-4 Scheduling Latency Components

With these different parts of latencies, it can be seen that other parts but disabled interrupts and
preemption latencies are always fairly constant and predictable. Therefore, these two causes of
latencies are significant as they depend on the currently executing program, which means that the
delays can extend for a lengthy period. Optimizing and minimizing these two scheduling latency
components in the Linux kernel is the most important goal of the PREEMPT_RT patch.

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

14

https://www.starfivetech.com/

3. Measurement Setup
Various RISC-V development platforms and software utilities were used in the process of measuring
and analyzing the real-time performance of the Real-Time Linux system. The selected development
platforms express typical RISC-V systems currently available. In addition, the utilized measurement
tools are common in the industry and widely used in other similar studies, thus they provide easily
comparable results.

3.1. Kernel Configuration
The RISC-V architecture has been supported by the Linux kernel since version 4.15, dating back to
2017. StarFive VisionFive 2 BSP now uses the 5.15.0 version of kernel. So the BSP kernel 5.15.0 is
chosen to apply RT-Linux patches. Due to RT-Linux not supporting the RISC-V architecture on kernel
5.15, kernel has multiple custom changes that allow PREEMPT_RT to function on RISC-V. These
changes are described thoroughly in PREEMPT_RT For RISC-V (on page 18). This customized
kernel codebase was used for all measurements and latency analysis.

The final measurements featured two differently configured kernels. The only difference between
the kernels was the preemption setting, but otherwise, the used configurations were the same. In
the real-time kernel configuration, the preemption setting was set to the real-time mode. Whereas
in the mainline kernel configuration, this same setting was instead set to low-latency desktop.

3.2. Load Generation
When a given computer system is idling, i.e., doing nothing, it can typically react to external events
very quickly. But, on many systems, this behavior can drastically change when a load is applied.
For this reason, measuring the latencies of a real-time platform without any load usually does not
give representative results. Having the actual application software running would ideally allow for
measuring the real latencies a particular system experiences. However, this software might not
always be available, or running it would not be practical for some reason. Also, if the application
is doing some specific operation very rarely, catching the longest possible latencies could take a
significant amount of time. For these situations, it is usually best to run some artificial loads during
the latency measurements.

There are many tools available for this purpose, but stress-ng (version 0.13.0) was selected for this
test, as it is one of the most flexible utilities and is already widely used in the industry. It has been
specially designed to test various operating system interfaces and to exercise physical subsystems of
computer platforms. The original purpose of stress-ng was to find hardware issues such as thermal
overruns. Today, the tool has a very wide range of stressors capable of, for example, discovering
kernel bugs and executing benchmarking. But most importantly, it can be also used to reveal
unexpected latencies from real-time systems.

15 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 3 - Measurement Setup

In total, the stress-ng implements over 220 different stressors which makes it possible to design a
comprehensive set of tests. For this study, every category was selected so that they loaded distinct
parts of the system but also mimicked realistic use cases best as possible. To get broad information
about the system behavior, a total of five different stress categories were selected for further
inspection. Once each of the categories was executed, always a total of four processes were started,
one for each core. This made sure that all cores had an equal amount of load applied to them.

• idle: system without any background workers performing computation. The system will be
able to respond as quickly as possible (stress-ng not invoked).

• cpu: create workers that perform various floating-point arithmetic operations. This will add
CPU and cache stress (stress-ng --matrix 4).

• os: create workers that exercise various set*() system calls. This will stress internal kernel
operations and data structures (stress-ng --set 4).

• memory: create workers that continuously call mmap() operations and write to the allocated
memory. This will stress memory handling (stress-ng --vm 4).

• storage: create workers that repeatedly create and remove directories. This will stress the
filesystem and Input/Output (I/O) infrastructure (stress-ng --dir 4).

A simple process was followed to select the most appropriate stressors for each category. First,
all available stressors were briefly tested, and the measured latencies were recorded. Then,
the results were sorted according to the maximum observed latencies, and from this list, it was
possible to pick the most appropriate stressors. The final selection was done so that each one of
the categories would represent a typical workload in an embedded real-time system, but in a way
that would reveal some interesting results. Therefore, it would have been possible to find stressors
that generate even longer latencies with some specially crafted arguments, but as they would not
represent realistic scenarios, these options were disregarded.

3.3. Latency Measurement
There are multiple ways of defining the latency of a given system and equally many ways of
measuring it. For this study, a simple and widely used method of evaluating the real-time
capabilities of a given system based on scheduling latency was selected. This mimics the behavior
of many typical control systems that execute a periodic task that must be precisely timed. Also, this
same situation arises when the system is reacting to some external asynchronous events.

The tool in question cyclictest (version 2.20) was used as the main measuring utility in the latency
measurements. It was originally built by the authors of PREEMPT_RT to help with the development
effort by precisely measuring the system latencies, as presented in Figure 3-1 : Cyclictest Latency
Measurement (on page 17). The cyclictest works by starting a regular master thread, which will
start several real-time measuring threads. Each one of these real-time threads is set to periodically
wake up after a defined interval. Every time they are woken up, the difference between intended
and actual wake-up time is then recorded and passed along to the master process. The master
process stores all these results, and once the test ends, it outputs the aggregated results.
www.starfivetech.com © 2018-2024 StarFive Technology

All rights reserved
16

https://www.starfivetech.com/

| 3 - Measurement Setup
Figure 3-1 Cyclictest Latency Measurement

For SMP systems, such as the VisionFive 2, the cyclictest provides statistics individually for each core.
However, having these separated results is not generally important for overall latency evaluation.
For this reason, the calculations and graphs presented in this thesis are simplified by simply adding
the results from every core together to get a single number of latencies for the whole system. This
makes the provided measurement results easier to visualize and understand.

The cyclictest should be carefully configured for each system and measurement scenario.

Most importantly, the priority and interval need to be set according to the measurement situation.
To measure system latencies, the priority should be set higher than the load running on the system.
The most optimal value for the interval would be slightly bigger than the maximum observed
latency. Overall, multiple options were set to specific values to get the most appropriate latency
results.

• --priority=99 selects the measuring thread real-time priority equal to 99.

• --interval=200 sets the intended measuring thread wake-up period to 200 µs.

• --duration=10m sets the total duration of the measurement to 10 minutes.

• --histogram=200 enables histogram generation from the measurement up to latencies of 200
µs.

• --smp causes a single pinned thread to be launched for each available core.

• --mlockall makes process memory lock paging once everything is allocated.

The cyclictest tool also automatically sets some noteworthy parameters, which could also be
manually set, to default values based on these selections. Most notably the distance parameter of
measurement thread intervals is automatically set to zero because the histogram option is specified.
In addition, the scheduling policy is by default set to SCHED_FIFO. Altogether, these parameters are
quite typical and well-suited for measuring latencies that a real-time application would experience.

17 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

4. PREEMPT_RT For RISC-V
This chapter mainly describes the application of PREEMPT_RT in StarFive JH-7110 SDK kernel (Linux
kernel v5.15) for test only. If it comes to the implementation of industrial projects, using the kernel
v6.6 LTS is more suitable, because RT-Linux has already supports the RISC-V architecture in the
kernel 6.6 LTS, and most of the drivers for StarFiveJH-7110 can be found in kernel v6.6. Only needs
to apply the RT-Linux patches on kernel v6.6 and compile the kernel containing the VisionFive 2
driver to use and test PREEMPT_RT.

The PREEMPT_RT patch already supports multiple architectures, and most of the important real-
time functionality is implemented in architecture-independent kernel code. Therefore, it is safe to
assume that these portions of the kernel are working correctly, and all changes required for RISC-V
operation would have to be done only in architecture specific code. Within the Linux kernel source
tree, this would include all files under the arch/riscv/ directory and every RISC-V specific driver in
the drivers/ directory. The implemented changes to the Linux kernel are listed in Appendix A: Real-
Time Linux Defconfig (on page 30) as a complete patch file.

This chapter discusses the different steps and modifications required when porting the basic
functionality of the PREEMPT_RT patch to RISC-V architecture. First, in Patch Application (on
page 18), the process of applying the PREEMPT_RT patch to the mainline kernel source tree is
presented. Finally, in LAZY_PREEMPT (on page 19), RT-Linux configuration LAZY_PREEMPT is
discussed.

4.1. Patch Application
The first step of getting the PREEMPT_RT working with RISC-V architecture was to apply the official
patch file to the mainline Linux kernel source tree. Usually, with correctly selected versions, this
would be a very simple step of just using the patch command to apply a single patch file. However,
in this case, there was a very specific version of the Linux kernel required to correctly support the
StarFive JH-7110 DevKit. Now the StarFive JH-7110 DevKit Linux version is 5.15.0.

Download 5.15.0-rt patch from: This Link.

Download 6.6 patch from: This Link.

Note:
To apply this patch, please execute following command:

patch -p1 < (patch)

After applying the 5.15.0 RT patch, apply the patches in Appendix A (on page 30). These patches
contain the LAZY_PREEMPT configuration for the RISC-V architecture and enable the PREEMPT_RT
configuration for JH-7110 DevKit. Additionally, a modification has been made to the kernel/
sched/cpupri.c file regarding task prioritization by patch: 0004-cpupri-a-work-

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

18

https://cdn.kernel.org/pub/linux/kernel/projects/rt/5.15/older/patch-5.15-rt17.patch.gz
https://cdn.kernel.org/pub/linux/kernel/projects/rt/6.6/
https://www.starfivetech.com/

| 4 - PREEMPT_RT For RISC-V

around-for-non-rt-test-panic. This modification addresses an issue in the official RT
patch where non-RT tasks would trigger a 'kernel panic' during a stress test. However, please note
that this is a workaround.

4.2. LAZY_PREEMPT
In the RT patches set. A LAZY_PREEMPT configuration is not supported by RISC-V. But it is an
important feature in RT-Linux. This patch enhances the non RT workload performance. It is
necessary to support it. Though RT-linux not support RISC-V architecture. But we can get other
architecture patch(ARM/x86) to implement it.

An implementation of RISC-V LAZY_PREEPMT is list in Appendix A. The patch has been verified by
OpenPLC test. Both latency and jitter are improved from test result.

For more detail about LAZY_PREEMPT, below is the commit messages of LAZY_PREEMPT.

It has become an obsession to mitigate the determinism vs. throughput loss of RT. Looking at the
mainline semantics of preemption points gives a hint why RT sucks throughput wise for ordinary
SCHED_OTHER tasks. One major issue is the wakeup of tasks which are right away preempting
the waking task while the waking task holds a lock on which the woken task will block right after
having preempted the wakee. In mainline this is prevented due to the implicit preemption disable of
spin/rw_lock held regions. On RT this is not possible due to the fully preemptible nature of sleeping
spinlocks.

Though for a SCHED_OTHER task preempting another SCHED_OTHER task this is really not a
correctness issue. RT folks are concerned about SCHED_FIFO/RR tasks preemption and not about the
purely fairness driven SCHED_OTHER preemption latencies.

So I introduced a lazy preemption mechanism which only applies to SCHED_OTHER tasks preempting
another SCHED_OTHER task. Aside of the existing preempt_count each tasks sports now a
preempt_lazy_count which is manipulated on lock acquiry and release. This is slightly incorrect as for
lazyness reasons I coupled this on migrate_disable/enable so some other mechanisms get the same
treatment (e.g. get_cpu_light).

19 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 4 - PREEMPT_RT For RISC-V

Now on the scheduler side instead of setting NEED_RESCHED this sets NEED_RESCHED_LAZY in case
of a SCHED_OTHER/SCHED_OTHER preemption and therefor allows to exit the waking task the lock
held region before the woken task preempts. That also works better for cross CPU wakeups as the
other side can stay in the adaptive spinning loop.

For RT class preemption there is no change. This simply sets NEED_RESCHED and forgoes the lazy
preemption counter.

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

20

https://www.starfivetech.com/

5. Cyclist Test Result
The Linux kernel is a very complicated piece of software, so it is not always easy to prove the
exact latency characteristics of a given system. Usually, the latencies also highly depend on the
workload and selected kernel configuration. The combination of these and many other parameters
are endless, but practical measurements can give a good insight into latencies that would also be
experienced in practical real-world applications.

This chapter presents the latency measurement results of this thesis. First, in General Functionality
(on page 21), the general functionality of the measurement systems is discussed. Then, in
Latency Measurements (on page), the measured latency table and relevant characteristic
numbers are given from both kernels.

5.1. General Functionality
There really are not any quantitative measurements that could be done to evaluate the general
functionality and correctness of a system. However, normal usage, comprehensive testing, and
latency measurements already gave a good estimate of the overall system functionality. An
incorrectly working system would have caused noticeable problems, such as wrong calculation
results or kernel panic messages. The system functionality was constantly observed during the
testing and development, which proved the general system to be working very reliably. But other,
more thorough experiments were not executed to evaluate the system functionality.

Throughout all latency measurements, the system was completely stable and usable without
any signs of problems. The kernel did not show any instability even when different areas were
loaded heavily. During all the testing no system misbehavior was observed, which gives good
confidence that the PREEMPT_RT patched Linux was not experiencing any severe problems on RISC-
V architecture.

5.2. Latency Measurements
The latency measurements were started by compiling appropriate kernel images, filesystems,
bootloaders, and other requisite files to the local development machine. Both used kernels were
configured as presented earlier in Load Generation (on page 15). Once all files were flashed to
the SD card and the system was successfully booted, it was left idle for 3 minutes before any
testing. During that time, the kernel had time to initialize internal data structures such as the
random number generator to fully complete the boot process. This way, any of the internal kernel
initializations did not affect the measurement results.

After this procedure, the kernel was ready for the actual measurements. For the VisionFive 2 contain
DVFS driver. The CPU frequency can be changed in the test. To get the accuracy test result, set the
CPU frequency to maximum(1.5 GHz)

21 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

unique_21
unique_21
unique_21
https://www.starfivetech.com/

| 5 - Cyclist Test Result

1. Set maximum CPU frequency.

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

2. Set different load (cpu, os, memory or storage).

cpu: stress-ng --matrix 4

os:stress-ng --set 4

memory: stress-ng --vm 4

storage:stress-ng --dir 4

3. Run cyclitest.

cyclictest -m -S -p 99 -i 200 -q -D 10m -H 200

(The cyclictest arguments detail can see in Latency Measurement (on page 16))

Each latency measurement lasted for a total duration of 10 minutes resulting in approximately 1.2
million latency samples each. The same process was repeated for every load category using the
mainline and the PREEMPT_RT patched kernels without experiencing any problems. Altogether,
there were a total of 10 different measurement combinations that were executed.

The dataset is presented in Table 5-1 : Latency Measurement Results (on page 22). It is easier
to do a comparison between different categories and kernels using the tabular format. Most
importantly the table contains the absolute maximum observed latencies from each measurement.
Other important

calculated numbers are the average latency and respective standard deviation. Also, the minimum
observed latencies are presented for completeness. The cyclictest tool reported measured practical
clock resolution to be 1 µs, so all presented calculations and measurements are rounded to the
nearest microsecond.

Stdev is standard deviation of the latency. It reflects the jitter of the latency. The less the value of
stdev, the better real-time system. The methods of computation and an example is list in Appendix
B.

Table 5-1 Latency Measurement Results

Real-Time Mainline

Stress
Avg(µs) Stdev(µs) Min(µs) Max(µs) Avg(µs)

Stde
v(µs)

Min(µs)
Max
(µs)

Idle 6 2 5 37 8 4 6 66

CPU 8 4 6 39 10 6 6 88

OS 9 8 6 46 20 16 6 9162

Mem 12 6 6 95 12 14 6 14125

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

22

https://www.starfivetech.com/

| 5 - Cyclist Test Result

Table 5-1 Latency Measurement Results (continued)

Real-Time Mainline

Stress
Avg(µs) Stdev(µs) Min(µs) Max(µs) Avg(µs)

Stde
v(µs)

Min(µs)
Max
(µs)

Storage 10 7 7 49 16 14 7 3025

For the mainline kernel, the lowest maximum latency was measured when the system was idling,
as would be expected. Also, in this particular case, the average latency and standard deviation were
the smallest. When the CPU load was introduced to the system, it caused the latencies to rise, but
the maximum latency was kept under 100 µs. However, with every other type of load, noticeably
longer latencies were experienced.

The OS and memory stress test in main line kernel seemed to much worse than real-time Kernel.
With this type of load, the maximum latencies were in the order of milliseconds, and the average
latency was also much higher with a significant standard deviation when compared to Real-time
system.

With real-time kernel, the observed latencies were very similar to each other, across all different
categories. All measured maximum latencies, except for the error category, were well below 200 µs.
Also, the observed standard deviations were consistently small throughout the tests, suggesting that
most of the experienced latencies were close to the average numbers. Therefore, applying any of
the selected loads to the system did not affect the system responsiveness by a significant amount.

23 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

6. Analysis
The PREEMPT_RT patch improves the worst-case latency numbers in RISC-V when compared to
the current mainline version. The numbers show that the minimum requirements for a real-time
operation are already fulfilled by this system. Also, the studied RISC-V system seems to be capable
of achieving very similar latency figures as some other architectures that are already officially
supported. This observation confirms that the RISC-V has future potential, but to get this setup
feasible for production-level usage there is still plenty of work and verification ahead.

This chapter analyses the measurement results presented earlier in Cyclist Test Result (on page
21)Chapter 4. First, different aspects affecting the latency performance are discussed in Latency
Analysis (on page 24). Then, in Suitability for Real-Time Applications (on page 25), the
suitability of RISC-V Real-Time Linux in practical applications is analyzed in detail. Finally, future work
related to this setup is discussed in Future Work (on page 26).

6.1. Latency Analysis
As expected, with the addition of the PREEMPT_RT patch, overall worst-case system latency was
reduced significantly in almost every stress scenario. This is especially relevant in some of the most
demanding categories, where the real-time kernel was able to achieve comparable latencies to an
unloaded system. In these same test cases, the mainline kernel had significant latencies and could
not even be considered to be acceptable for many real-time systems. Most notably, the latency in
the out-of-memory error condition was very significant and reached well in the milliseconds’ region
with the mainline kernel. This was not the case in the real-time kernel where the same latency was
still comparable to other categories. Based on these measurements, the reliability and determinism
of the real-time kernel are confirmed to hold in terms of experienced scheduling latencies.

The single biggest reason behind the real-time kernel’s superior performance seems to be the
conversion of spinlocks to sleeping locks that also implement priority inheritance functionality.
This is to be expected as the non-preemptible regions inside the kernel are significantly reduced
by this change. Also, the conversion of most interrupt handlers to be threaded and thus subject
to scheduling with lower priorities might slightly account for the better latencies measured with
the real-time kernel. The reason why this change is probably not so relevant with this particular
kernel configuration, as the conversion of spinlocks, is that there were not too many sources of
interrupts enabled. Those that were required to be enabled seemed to be anyways quite fast to
complete compared to the other sources of latencies. In the end, the latency improvements of
PREEMPT_RT probably did not appear to be that impressive when compared to the performance of
the mainline kernel which is already quite close to being real-time capable. This is mostly because
other significant changes historically introduced by PREEMPT_RT are already merged, so they also
benefit the mainline kernel.

Even if the real-time kernel is better than the mainline, it still has some sections that produce the
over 150 µs latencies that were consistently measured. Based on the tracing of the kernel internals,
some insight into these latencies was acquired. The longest latencies appear to be exclusively
www.starfivetech.com © 2018-2024 StarFive Technology

All rights reserved
24

https://www.starfivetech.com/

| 6 - Analysis

caused by timer interrupts, which are always executed in hard interrupt context, and occasional
raw spinlocks that are still required. The other significant peaks in the latency histograms show that
there are also some additional causes for smaller, but considerable latencies. However, analyzing
these reliably by tracing is hard and probably unnecessary if the longer latencies still occur. Also,
some of the latency differences between different categories are probably explained by hardware-
specific issues. For example, a more demanding load to the system might cause additional cache
misses, etc. that cannot be fully mitigated by the PREEMPT_RT patch.

Overall, the findings of this thesis are quite significant, as they show that the PREEMPT_RT patch
on RISC-V can be made to work without too much additional effort. With the real-time preemption
model enabled, the measured latencies are fairly predictable and generally in an acceptable range
for a real-time system. In addition, there do not seem to be any fundamental problems with running
the PREEMPT_RT on RISC-V architecture. However, it is possible that if some more advanced kernel
features were enabled from the configuration, there might be some fundamental problems with the
current RISC-V specific implementation. At least with more enabled features from the kernel, the
latency performance could get worse.

Even though performing exact measurements on a Linux system is challenging, the results are very
repeatable and sensible. However, the latency measurements will always have some uncertainty
as the system is very asynchronous and mainly driven by interrupts. More exact results could have
been observed by running each one of the latency measurements for a longer period, even for
days. The general shape of the latency response, however, is still captured with the used shorter
test duration. One actual source of possible errors in the presented results is the used PREEMPT_RT
patch version, as the closest version was for 6.3 kernel. This means, that there is a possibility that
up until the official release of this version, some new features could have been added to the kernel
which are not handled properly by the PREEMPT_RT. However, this is quite an unlikely situation, and
also the tracing results suggest that there should not be any problems regarding this. Anyways, using
the results presented in this thesis as a conservative estimate is fine. Finally, it is also possible that
there is still some oversight in the system configuration. Otherwise, all other sources of error should
be mitigated and taken into account in the measurements.

6.2. Suitability for Real-Time Applications
Whether the presented system is suitable for practical usage is depended on the application. The
measurements overall give a good reference for a wide variety of practical applications that stress
the system in different ways. However, slightly differently configured, or selected stressors might
have given different results. Likewise, it should be noted that cyclictest can give somewhat optimistic
numbers, so that would need to be carefully considered when referencing these numbers for
real-world usage. Even the cyclictest utility itself can interfere with the latency measurements. In
addition, the used minimal real-time kernel is certainly not representative of practical applications,
so changing the configuration might bring up additional challenges.

Regardless, already at this point, without any significant architecture-specific latency optimizations
the system appears to achieve acceptable latencies. The current system can be considered soft or

25 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

| 6 - Analysis

firm but certainly not hard real-time capable. This means that in theory, the presented system would
be suitable for industrial machinery, but in practice, official support by PREEMPT_RT with extensive
prior experience would be required. Starting from kernel v6.6, RT-Linux officially supports RISC-V
architecture.

Other properties of RISC-V, of course, provide some appealing benefits in comparison to other
architectures for industrial applications. It is a completely open ecosystem, and for example, it is
easier to develop completely custom instruction-level extensions. The RISC-V ecosystem is also very
modern as there is not any legacy burden on the system. All these aspects might very well make a
Real-Time Linux running on the RISC-V platform a desirable system for some use cases in the future.

6.3. Future Work
This thesis presented only the very first steps of assessing the Real-Time Linux on RISC-V
architecture. There is a huge number of possibilities to study this topic further as other related
research is practically nonexistent. The future work could include, e.g., testing the effect of
some additional kernel options, evaluating more stress categories, and looking into some kernel
optimizations such as things related to the multi-core operation. Also, experiments from different
hardware platforms, measurements about completely different metrics, and practical PREEMPT_RT
development work would be valuable in the future. Studying these topics further would give
important information regarding the possibilities of RISC-V architecture for practical industrial real-
time applications.

As stated earlier, the kernel configuration used in this thesis is very minimal and real systems would
certainly need some additional features of the Linux kernel to be enabled. Because of this, it would
be beneficial to do some further research by enabling some of the most important additional kernel
configuration options and testing how they affect the latency performance. Excluding obvious
debugging options, a properly behaving Real-Time Linux kernel should not be significantly affected
by this. However, some parts of these options could introduce substantial latencies and thus would
need some optimization work before they could be considered acceptable to be used in a real-time
configuration. Also, simultaneously perhaps even additional errors related to locking and general
real-time behavior could be discovered and fixed.

As the Linux systems are very complex, there are plenty of other interesting metrics in addition to
the latency that could be measured. Having more statistics from areas like memory usage, power
consumption, and system throughput would be very valuable information about other aspects of
using a Real-Time Linux on RISC-V. In addition, a wider range of stress categories could be tested and
evaluated as this study completely ignores areas such as networking or other sources that cause a
significant number of interrupts. Designing these additional stress categories would most certainly
have to be done together with the enabling of additional kernel features.

Regarding the current system, it might be possible to do some additional optimization on the
settings used in this study and achieve even lower latencies. For example, restricting some
interrupts to certain cores by setting CPU affinity bits might bring slight improvement to the
experienced latencies on other cores. Also, some code-level optimization would probably be

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

26

https://www.starfivetech.com/

| 6 - Analysis

possible. This optimization work should be targeted to areas amounting to the longest latencies as
discussed previously. With these changes, the latencies could be even smaller than presented in this
thesis. Also, the RISC-V architecture itself is under continuous development having new features
proposed and ratified regularly. For example, there is ongoing work to design and implement a
better and more flexible interrupt controller hardware. This proposal for Core-Local Interrupt
Controller (CLIC) aims to add completely new features to the current PLIC-based architectures.
Significant improvements would include support for interrupt preemption and selective vectoring
among others. These features could be useful or even critical for some time-sensitive applications,
so in the future, RISC-V would be even more capable of handling different real-time workloads.
However, it should be noted that these details are subject to change as the CLIC specification is
still in the very early development phase. There will certainly be other similar development of new
hardware blocks in the future.

Alongside RISC-V hardware, also the general software support will continue to improve. The most
important pieces of software, e.g., compilers, debugging tools, and Linux kernel already have
great support for RISC-V but of course, it is still a bit behind other older and more established
architectures. For example, every feature of the Linux kernel is not yet fully supported when RISC-
V architecture is used. But most certainly the ever-growing community and commercial interest will
bring fixes to some of these issues. Overall, the whole RISC-V ecosystem is getting better every day.

In the end, the single most important thing for using Real-Time Linux on RISC-V architecture would
be official support. This would guarantee the functionality to a certain degree, as at that point,
the community using that product would be considerably larger. Starting from kernel v6.6 LTS,
RISC-V has become the official support for RT-Linux, and most of StarFive JH-7110 driver code has
been accepted in Kernel 6.6, which is of great advantage for JH-7110 to enter RT-Linux commercial
industrial. Based on this article, the RISC-V architecture should be fully suitable for higher demand
industrial applications.

27 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

7. Conclusion
As real-time systems become more complex and require more advanced features, the benefits
of using complete GPOS to help implement some of these requirements more rapidly become
increasingly appealing. Using the PREEMPT_RT patch with Linux kernel and one of the many
officially supported architectures is currently one of the most

viable ways of achieving that goal if the real-time requirements are not too strict. In the meantime,
the RISC-V is already getting lots of attention in the industrial space, and in the future, it will
probably be a prominent player in the field of embedded devices. Once the availability of
commercial RISC-V solutions improves and the Linux kernel support for RISC-V architecture
progresses, together they bring a very interesting platform that can compete with other
architectures. Inevitably, at some point, there will be genuine demand and support for advanced
RISC-V systems that run Real-Time Linux.

With a couple of small tweaks presented in this thesis, the core of the PREEMPT_RT patch on
RISC-V looks to be already fully functional. Most importantly, it does not seem to contain any
fundamentally problematic sections of code that produce kernel panics, deadlocks, or other
significant issues. Also, the latency measurements show promising results regarding real-time usage
scenarios. This unoptimized Real-Time Linux running on a RISC-V platform can already achieve
similar results to other officially supported architectures. However, the evaluated system was very
minimal and therefore does not yet necessarily represent a practical system.

With PREEMPT_RT applied, even in high load situations, the maximum observed latency was kept
below 150 µs. In a severe, system out-of-memory error condition, the maximum latency was well
below 250 µs. This is significantly lower when compared to the mainline kernel, which experienced
latencies well in the milliseconds’ region. Overall, the maximum observed latency seems to be
very deterministic, so they do not depend on the system load, which is the single most important
requirement for the operation of all real-time systems. These numbers are especially impressive as
there are not currently any RISC-V architecture or driver-specific latency optimizations done. The
main factors contributing to the current latencies still present in the PREEMPT_RT kernel seem to
be related to timer interrupts and occasional raw spinlocks. Optimizing some of these parts could
improve the experienced latencies even more.

Based on the latency measurements, the PREEMPT_RT on RISC-V could be already suitable for
some situations that do not need better response times than 200 µs. Without any error conditions,
the current system should be able to reliably respond within that time limit. However, Like
LAZY_PREEMPT and other feature required to be supported. Besides, this is not yet possible in
practice, as there would need to be official support for the RISC-V architecture in the PREEMPT_RT
patch for any serious project. Probably in addition to this, there would need to be some proven
track record to give enough confidence to use such systems in industrial projects. At the bare
minimum, it will take several years even before this can be considered. It is also worth noting that
adding more options to the kernel might cause some longer latencies. This matter would require
additional studying in the future to know the different options that might cause problems.

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

28

https://www.starfivetech.com/

| 7 - Conclusion

The future of real-time capable Linux systems running on RISC-V architecture, in general, seems
to be very promising. Different real-time extensions of Linux will be more prominent than ever
before and PREEMPT_RT will have an important role in that development. Fully mainlining the
PREEMPT_RT patch to Linux kernel source would only accelerate the development as there is
exposure to an even bigger community. Starting from kernel v6.6, RT-Linux officially supports RISC-
V architecture. With official support, it is possible to better track and resolve RT-Linux kernel issues.
Also, the general RISC-V support in the Linux kernel, as well as the architecture agnostic parts of
PREEMPT_RT itself, will develop continuously. There might even be some completely new features
implemented to the Linux kernel that will enable even lower latencies in the future. This work
will most certainly help with the future adoption of RISC-V as a viable alternative to other existing
architectures. Regardless, with this study completed, the RISC-V architecture has started its journey
to achieving official support for PREEMPT_RT patch.

29 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

8. Appendix A: Real-Time Linux Defconfig
1. RISC-V RT patch download link: 0001-riscv-allow-riscv-preempt_rt-config.patch

2. Config_Add_PREEMPT patch download link: 0002-enable-full-preempt-rt-config.patch

3. LAZY_PREEMPT patch download link: 0003-riscv-rt-add-riscv-lazy-preempt-support.patch

4. CPUPRI_workaround_RT_test patch download link: 0004-cpupri-a-work-around-for-non-rt-
test-panic.patch

Note:
Please apply the patches in the above order.

To apply the patches, execute the following command:

• With git repository:

git am (patch)

• Without git repository:

patch -p1 < (patch)

www.starfivetech.com © 2018-2024 StarFive Technology
All rights reserved

30

https://rvspace.org/solution/rt_linux/0001-riscv-allow-riscv-preempt_rt-config.patch
https://rvspace.org/solution/rt_linux/0002-enable-full-preempt-rt-config.patch
https://rvspace.org/solution/rt_linux/0003-riscv-rt-add-riscv-lazy-preempt-support.patch
https://rvspace.org/solution/rt_linux/0004-cpupri-a-work-around-for-non-rt-test-panic.patch
https://rvspace.org/solution/rt_linux/0004-cpupri-a-work-around-for-non-rt-test-panic.patch
https://www.starfivetech.com/

9. APPENDIX B: Standard Deviation
The formula of standard deviation is listed below:

Figure 9-1 Formula of Standard Deviation

n is the sample count, is the mean value of the sample count.

Here is an example of standard deviation calculation.

Total 4 latency counts, 4, 4, 6, 6. n is 4 , the mean value is 5. The standard deviation value is 1.

31 © 2018-2024 StarFive Technology
All rights reserved

www.starfivetech.com

https://www.starfivetech.com/

	Analysis of Running Real-Time Linux on VisionFive 2
	Legal Statements
	PROPRIETARY NOTICE
	Contact Us

	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Revision History
	Notes and notices

	1. Introduction
	2. Linux in Real-Time Systems
	2.1. Real-time systems
	2.2. Real-Time Extensions
	2.3. Task Scheduling
	2.4. Kernel Preemption
	2.5. Scheduling Latency

	3. Measurement Setup
	3.1. Kernel Configuration
	3.2. Load Generation
	3.3. Latency Measurement

	4. PREEMPT_RT For RISC-V
	4.1. Patch Application
	4.2. LAZY_PREEMPT

	5. Cyclist Test Result
	5.1. General Functionality
	5.2. Latency Measurements

	6. Analysis
	6.1. Latency Analysis
	6.2. Suitability for Real-Time Applications
	6.3. Future Work

	7. Conclusion
	8. Appendix A: Real-Time Linux Defconfig
	9. APPENDIX B: Standard Deviation

